- 基于STM32的语音播报小项目课程设计程序开源
看,是大狗
stm32开源嵌入式硬件
目录单片机毕业设计论文前言单片机毕业设计功能介绍设计视频演示单片机课程设计设计论文前言随着科技的飞速发展和智能化时代的到来,人们对环境监测的需求日益增加,尤其是在温度监测方面,精准、实时的温度数据对于工业生产、农业生产以及日常生活都具有重要意义。传统的温度监测系统往往功能单一,缺乏实时反馈和智能化处理能力,难以满足现代应用场景的需求。近年来,嵌入式系统、传感器技术和语音交互技术的快速发展,为温度监
- 【ESP32设备通信】-使用Modbus RTU读取传感器数据
视觉与物联智能
物联网全栈开发实战嵌入式硬件ModBusModBusRTUESP32物联网传感器单片机
使用ModbusRTU读取传感器数据文章目录使用ModbusRTU读取传感器数据1、什么是Modbus2、什么是ModbusRTU3、用于RS-485通信的MAX485模块4、RS485温湿度传感器5、硬件准备与接线6、代码实现在本文中,我们将深入研究ModbusRTU协议,并学习如何使用ESP32实现该协议,以便通过RS485从从设备读取传感器数据。为了简化和加深理解,我们将重点介绍一个基于Mo
- 深度学习方法生成抓取位姿与6D姿态估计的完整实现
ZPC8210
ROS深度学习人工智能
如何将GraspNet等深度学习模型与6D姿态估计集成到ROS2和MoveIt中,实现高精度的机器人抓取系统。1.系统架构text[RGB-D传感器]→[物体检测与6D姿态估计]→[GraspNet抓取位姿生成]→[MoveIt运动规划]→[执行抓取]2.环境配置2.1安装依赖bash#安装PyTorch(根据CUDA版本选择)pip3installtorchtorchvisiontorchaud
- CG-04 翻斗式雨量传感器 分辨率0.1mm,0.2mm可选择 金属材质
zhang13383089075
雨量监测网络人工智能自动化服务器运维
产品概述CG-04型翻斗式雨量传感器是一种水文、气象仪器,用于测量自然界降雨量,同时将降雨量转换为以开关量形式表示的数字信息量输出,以满足信息传输、处理、记录和显示等的需要。本仪器由承雨器部件和计量部件等组成。承雨口采用口径Φ200mm。计量组件是一个翻斗式机械双稳态秤重机构,其功能是将以mm计的降雨深度转换为开关信号输出。功能特点◆体积小,安装方便;精度高,稳定性好◆线性度好,传输距离长,抗干扰
- 基于YOLOv8的火灾智能检测系统设计与实现
斟的是酒中桃
深度学习人工智能pyqtyolo
在各类安全事故中,火灾因其突发性强、破坏力大,一直是威胁人们生命财产安全的重大隐患。传统的火灾检测方式多依赖烟雾传感器、温度传感器等,存在响应滞后、易受环境干扰等问题。随着深度学习技术的飞速发展,基于计算机视觉的火灾检测方法凭借其实时性强、检测范围广等优势,逐渐成为研究热点。本文将简单介绍一款基于深度学习的火灾智能检测系统的设计与实现过程。一、系统整体设计本火灾智能检测系统旨在通过深度学习技术实现
- 机器学习基础:从数据到智能的入门指南
一、何谓机器学习在我们的日常生活中,机器学习的身影无处不在。当你打开购物软件,它总能精准推荐你可能喜欢的商品;当你解锁手机,人脸识别瞬间完成;当你使用语音助手,它能准确理解你的指令。这些背后,都离不开机器学习的支撑。机器学习是一门让计算机能够从数据中学习并改进的学科。随着传感器技术的飞速发展,我们身边充满了各种传感器,如手机中的摄像头、麦克风,交通监控中的传感器等,它们收集了海量的数据。这些数据就
- 基于单片机直流电机调速控制系统设计
**单片机设计介绍,基于单片机直流电机调速控制系统设计一概要 基于单片机直流电机调速控制系统设计是一个综合性项目,旨在利用单片机实现对直流电机转速的精确控制。以下是该设计的概要:一、系统概述该设计以单片机为核心控制器,结合适当的驱动电路和传感器,构建了一个完整的直流电机调速控制系统。通过调整单片机的输出信号,可以实现对直流电机转速的精确控制,满足不同应用场景的需求。二、硬件设计单片机选择:选用具
- 3D TOF 安全防护传感器
Laurel Vision
3DTOF3d安全计算机视觉
背景3DTOF安全防护传感器是一种先进的传感器技术,主要用于工业自动化、物流仓储、机器人应用等领域。基于3DToF原理,即飞行时间法的传感器,通过测量光脉冲从发射到接收的时间来计算物体与传感器之间的距离,从而获取三维空间信息,实现立体成像。立体安全传感器功能特性:空间安全防护:相比传统二维区域防护,三维立体具有更高安全性和灵活性。高精度:相比激光雷达精度更高,重复精度可达毫米级。简便软件设置
- 算力网异构协同与能效优化驱动工业物联及智慧民生实践
内容概要算力网络作为数字基础设施的核心载体,正通过异构协同架构与能效优化框架的深度融合,构建起支撑工业物联网与智慧民生应用的技术底座。随着边缘计算节点的快速部署与模型压缩技术的突破性发展,工业场景中的设备健康检测与实时故障分析已实现毫秒级响应,典型应用场景包括产线异常识别、设备寿命预测等关键领域。与此同时,数据预处理技术的迭代升级有效缓解了工业传感器数据维度爆炸带来的算力压力,通过特征提取与噪声过
- 传感器基础:传感器的基本原理_3.传感器的分类与应用
kkchenkx
信号仿真2信号处理
3.传感器的分类与应用在上一节中,我们讨论了传感器的基本原理和工作方式。本节将详细介绍传感器的分类及其在不同领域的应用。传感器可以根据不同的标准进行分类,例如工作原理、输出信号类型、测量对象等。了解传感器的分类有助于我们更好地选择和应用适合特定需求的传感器。3.1传感器的分类3.1.1按工作原理分类3.1.1.1电阻式传感器电阻式传感器通过测量电阻的变化来检测物理量的变化。常见的电阻式传感器包括应
- 电阻信号的含义与采集
、我是男生。
单片机嵌入式硬件
一、什么是“电阻信号”?严谨性探讨严格定义:在传感器与测量领域,“电阻信号”特指一个物理量(如温度、压力、应变、光照)的变化,导致某个敏感元件的电阻值(R)发生可测量的改变。这个变化的电阻值ΔR(或R)本身就是待测物理量的载体。为什么说“信号”?因为这个变化的电阻值ΔR包含了我们需要的信息(如压力多大、温度多高)。严谨性点评:你使用“电阻信号”一词完全准确且专业。这是传感器领域的标准术语(例如:R
- 基于单片机的住宅防盗报警系统的设计
QQ2193276455
单片机单片机嵌入式硬件
**单片机设计介绍,基于单片机的住宅防盗报警系统的设计文章目录一概要二、功能设计设计思路三、软件设计原理图五、程序六、文章目录一概要 基于单片机的住宅防盗报警系统的设计概要主要涵盖硬件设计、软件设计、工作原理以及功能实现等方面。以下是对这一设计的简要概述:一、系统概述基于单片机的住宅防盗报警系统采用单片机作为核心控制器,结合传感器技术、通信技术及报警装置,实现对住宅环境的全面监控和安全防护。系统
- Python,Go开发光电效应与日常应用APP
Geeker-2025
pythongolang
以下是一个基于Python与Go开发的光电效应科普与应用APP的完整技术方案,结合了物理原理模拟、实时数据处理及生活场景应用,参考了工业级开发实践(如光电实验数据处理和能源设备控制):---###一、系统架构设计```mermaidgraphLRA[Go微服务层]-->B[Python科学计算层]A-->C[数据库/物联网]B-->D[硬件接口]D-->E[传感器/实验设备]subgraph前端A
- Python,C++开发磁流体研究以及应用APP
Geeker-2025
pythonc++
#Python与C++开发磁流体研究与应用APP方案以下是一个结合Python与C++的磁流体(MHD)研究与应用APP的完整技术方案,融合了高性能计算、实时仿真和工业应用场景:##系统架构设计```mermaidgraphTDA[用户界面层]-->B[Python应用层]B-->C[C++核心计算层]C-->D[硬件接口层]D-->E[实验设备/传感器]subgraph前端A1[桌面端-PyQt
- 三轴云台之姿态调节技术篇
三轴云台的姿态调节技术通过机械解耦、传感器融合、智能控制算法及动态补偿机制协同实现,能在复杂运动环境下保持高精度稳定,其核心技术与实现方式如下:一、机械结构优化:三轴解耦与轻量化设计三轴独立驱动解耦俯仰轴(Pitch)、横滚轴(Roll)、航向轴(Yaw)通过无刷电机+编码器+驱动器模块化设计实现运动解耦,避免轴间干扰。应用场景:无人机急转弯时,航向轴优先响应姿态变化,俯仰轴同步补偿相机倾斜,横滚
- 三轴云台之控制算法协同技术篇
SKYDROID云卓小助手
人工智能算法机器学习网络自动化
三轴云台的控制算法协同技术是确保云台在复杂动态环境下实现高精度、高稳定性运动控制的核心,其技术体系涵盖多传感器融合、多算法协同以及多目标优化三个关键维度。以下从技术架构与实现路径展开分析:一、多传感器融合:构建环境感知基础三轴云台通过集成IMU(惯性测量单元)、编码器、视觉传感器等多源数据,构建高鲁棒性的环境感知系统。IMU与编码器融合IMU提供高频率的姿态角速度数据,编码器提供低延迟的关节位置反
- 三轴云台之高精度控制技术篇
SKYDROID云卓小助手
网络人工智能单片机嵌入式硬件安全
三轴云台的高精度控制技术通过多维度协同设计,实现了对负载(如相机)的毫米级稳定控制,其核心在于机械结构、传感器、算法与智能控制系统的深度融合。一、机械结构设计:三轴联动与轻量化三轴云台通过横滚轴(Roll)、俯仰轴(Pitch)、航向轴(Yaw)的三维联动,实现负载在三维空间中的稳定控制。其机械设计需兼顾刚性与轻量化:解耦设计:三轴独立驱动,避免轴间干扰。例如,无人机急转弯时,航向轴优先响应姿态变
- BEV+Transformer
Monkey PilotX
自动驾驶transformer深度学习人工智能
在自动驾驶系统中,BEV(Bird’sEyeView)+Transformer主要应用于感知与环境建图(Perception&SceneUnderstanding)环节,尤其是在多传感器融合、目标检测、语义分割、轨迹预测等任务中。在自动驾驶中的关键应用场景应用环节BEV+Transformer的作用感知(Perception)多摄像头图像融合成BEV视角,进行目标检测、语义分割预测(Predict
- 医疗AI与融合数据库的整合:挑战、架构与未来展望(上)
Allen_Lyb
数智化教程(第二期)人工智能数据库架构
引言随着人工智能(AI)在医疗健康领域的广泛应用,数据已成为医疗AI发展的核心驱动力。然而,医疗数据具有极度的异构性(包括结构化电子病历、医学影像向量、基因组JSON/图结构、传感器时序等),传统数据架构难以高效整合。因数据孤岛、复杂ETL流程以及昂贵维护成本,医疗AI平台通常难以充分发挥价值。融合数据库(ConvergedDatabase/多模态一体化数据库)通过支持SQL、JSON、图、向量、
- 工业相机基本参数
分辨率(Resolution)定义:分辨率指的是相机图像的像素数,通常以宽度x高度的形式表示,如1920x1080或2592x1944。作用:分辨率越高,相机可以捕捉到更多的细节。高分辨率相机适用于需要精确图像分析和细节捕捉的应用,如尺寸测量、表面缺陷检测等。如何调整:在工业相机中,分辨率通常是固定的(由传感器决定)。如果相机支持不同分辨率设置(例如,低分辨率模式和高分辨率模式),你可以通过相机的
- 自动驾驶激光3D点云处理系统性阐述及Open3D库函数应用
一碗白开水一
DPL自动驾驶3d人工智能
一、自动驾驶激光3D点云处理的核心挑战与流程自动驾驶系统依赖激光雷达(LiDAR)生成的高精度3D点云数据实现环境感知,其处理流程需解决以下核心问题:数据规模与实时性:现代LiDAR每秒生成数百万点,需在毫秒级完成处理以支持决策。动态环境适应性:需区分静态障碍物(如道路、建筑)与动态目标(如车辆、行人)。多传感器融合:与摄像头、雷达数据时空对齐,构建统一环境模型。典型处理流程分为四个阶段:原始点云
- 浮漂式水质监测设备:智能守护水环境的未来之眼
柏峰电子
人工智能
浮漂式水质监测设备:智能守护水环境的未来之眼柏峰【BF-FBSZ】随着全球水资源短缺和水污染问题日益严峻,水质监测技术正迎来前所未有的发展机遇。作为这一领域的创新突破,浮漂式水质监测设备凭借其实时性、智能化和网络化优势,正在重塑水资源管理的新格局。本文将深入探讨这一技术的原理、特点、应用场景及未来发展趋势。一、技术原理与系统架构浮漂式水质监测设备是一种集成了现代传感器技术、物联网和大数据分析的智能
- 【ESP32设备通信】-ESP-Now节点作为Web网关
视觉与物联智能
物联网全栈开发实战ESP32单片机嵌入式硬件物联网网关ESPNow
ESP-Now节点作为Web网关文章目录ESP-Now节点作为Web网关1、ESP-Now通信协议介绍2、硬件准备及项目介绍3、代码实现3.1查询MAC地址3.2接收方代码实现3.3发送方代码实现4、总结在本文中,我们将使用ESP-NOW通信协议和Wi-Fi同时创建一个ESP32web服务器。这个web服务器将显示由一个ESP32服务器板接收到的传感器读数,这些读数将通过ESP-NOW单向通信协议
- [硬件电路-36]:模拟电路的基本组成要素以及模拟信号处理
文火冰糖的硅基工坊
硬件电路信号处理
模拟电路通过连续变化的物理量(如电压、电流)处理现实世界中的信息,其核心在于对模拟信号的接收、转换、处理和输出。以下是模拟电路的基本组成要素及模拟信号处理的详细解析:一、模拟电路的基本组成要素模拟电路由功能模块和基础元件协同工作,共同完成信号处理任务。其核心组成要素可分为以下四类:1.信号源:模拟信号的起点功能:提供待处理的原始信号,可以是自然界的物理量或人工生成的信号。典型类型:传感器:将非电物
- 基于蜣螂算法优化多头注意力机制的卷积神经网络结合双向长短记忆神经网络实现温度预测DBO-CNN-biLSTM-Multihead-Attention附matlab代码
matlab科研助手
神经网络算法cnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍温度预测在气象学、农业、能源等领域具有重要的应用价值。随着大数据和人工智能技术的快速发
- 【图像处理基石】什么是CCM?
小米玄戒Andrew
图像处理基石图像处理人工智能ISPCCM颜色校正颜色科学空间转换
在颜色科学中,CCM通常指ColorCorrectionMatrix(颜色校正矩阵),是一种用于校正图像或色彩数据中颜色偏差的数学工具。它通过线性变换(矩阵运算)调整三原色(如RGB)的数值,使输出颜色更接近真实场景或目标标准,广泛应用于数字成像、图像处理、显示技术等领域。一、CCM的核心作用颜色校正矩阵的核心目的是解决设备间的颜色偏差。例如:相机传感器捕获的RGB数据可能因滤光片特性、光照条件等
- 【图像处理基石】如何入门大规模三维重建?
小米玄戒Andrew
图像处理基石深度学习人工智能三维重建大规模三维重建立体视觉大模型LLM
入门大规模三维重建需要从基础理论、核心技术到实践工具逐步深入,同时需关注该领域的经典工作和前沿进展。以下是分阶段的入门路径及值得重点学习的工作:一、基础理论与前置知识大规模三维重建的核心是从海量图像或传感器数据中恢复场景的三维结构,涉及计算机视觉、摄影测量、图形学、最优化等多个领域,需先掌握以下基础:数学基础线性代数:矩阵运算、特征值分解(用于相机姿态估计)、奇异值分解(SVD,用于基础矩阵求解)
- 人类的具身智能与机器的具身智能
人机与认知实验室
人类具身智能与机器具身智能的根本区别在于其基础机制和本质属性。人类具身智能是基于生物体的生理结构和神经系统的复杂交互,通过身体与环境的直接感知和体验,形成具有情感、意识和主观性的认知与行为能力。这种智能是动态的、适应性强的,并且深受个体经验、文化背景和社会互动的影响。而机器具身智能则是通过传感器、算法和数理模型来模拟与物理世界的交互,依赖于预设的规则和数据驱动的模式识别,缺乏人类的主观体验、情感和
- 基于Socket来构建无界数据流并通过Flink框架进行处理
每天五分钟玩转人工智能
Flink技术实战flink大数据Flink分布式无界数据
本文重点随着大数据技术的不断发展,实时数据流处理已成为企业应对海量数据、实现快速决策的关键技术。ApacheFlink是一个开源的流处理框架,它能够对无界数据流进行高效的、精确的处理。本文将介绍如何通过Socket构建无界数据流,并利用Flink框架进行无界流处理。基于Socket构建无界数据无界数据指的是源源不断产生的数据,这些数据通常来自各种实时数据源,如用户行为日志、传感器数据等。Socke
- 当OT遇见IT:Apache IoTDB如何用“时序空间一体化“破解工业物联网数据孤岛困局
Loving_enjoy
计算机学科论文创新点机器学习facebook经验分享课程设计
>在工业4.0的浪潮中,OT(运营技术)与IT(信息技术)的融合成为关键痛点。本文将深入解析ApacheIoTDB如何通过创新性的"时序空间一体化"技术,打通工业数据壁垒,并附可落地的完整解决方案代码。###一、工业数据孤岛:OT与IT的世纪之困####典型工业数据版图```mermaidgraphLROT领域-->A[设备传感器]OT领域-->B[PLC控制系统]OT领域-->C[SCADA系统
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓