此前没有深度学习神经网络的基础,理解CNN比较困难,于是先观看了B站上吴恩达深度学习课程,从logistics回归学起,到单层神经网络,多层神经网络,基本弄懂了损失函数,成本函数,梯度下降法,激活函数,正向传播和反向传播,超参数,收敛,迭代等概念。
配合该博文理解CNN->通俗理解卷积神经网络
卷积神经网络(简称CNN)是一类特殊的人工神经网络,是深度学习中重要的一个分支。CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。
CNN每一层由众多的卷积核组成,每个卷积核对输入的像素进行卷积操作,得到下一次的输入。随着网络层的增加卷积核会逐渐扩大感受野,并缩减图像的尺寸。
CNN是一种层次模型,输入的是原始的像素数据。CNN通过卷积(convolution)、池化(pooling)、非线性激活函数(non-linear activation function)和全连接层(fully connected layer)构成。
通过多次卷积和池化,CNN的最后一层将输入的图像像素映射为具体的输出。如在分类任务中会转换为不同类别的概率输出,然后计算真实标签与CNN模型的预测结果的差异,并通过反向传播更新每层的参数,并在更新完成后再次前向传播,如此反复直到训练完成 。
与传统机器学习模型相比,CNN具有一种端到端(End to End)的思路。在CNN训练的过程中是直接从图像像素到最终的输出,并不涉及到具体的特征提取和构建模型的过程,也不需要人工的参与。
import os, sys, glob, shutil, json
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
import cv2
from PIL import Image
import numpy as np
from tqdm import tqdm, tqdm_notebook
import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset
#步骤1:定义好读取图像的Dataset
class SVHNDataset(Dataset):
def __init__(self, img_path, img_label, transform=None):
self.img_path = img_path
self.img_label = img_label
if transform is not None:
self.transform = transform
else:
self.transform = None
def __getitem__(self, index):
img = Image.open(self.img_path[index]).convert('RGB')
if self.transform is not None:
img = self.transform(img)
# 设置最⻓的字符⻓度为5个
lbl = np.array(self.img_label[index], dtype=np.int)
lbl = list(lbl) + (5 - len(lbl)) * [10]
return img, torch.from_numpy(np.array(lbl[:5]))
def __len__(self):
return len(self.img_path)
##步骤2:定义好训练数据和验证数据的Dataset
train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]
print(len(train_path), len(train_label))
train_loader = torch.utils.data.DataLoader(
SVHNDataset(train_path, train_label,
transforms.Compose([
transforms.Resize((64, 128)),
transforms.RandomCrop((60, 120)),
transforms.ColorJitter(0.3, 0.3, 0.2),
transforms.RandomRotation(5),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])),
batch_size=40,
shuffle=True,
num_workers=0,
)
val_path = glob.glob('../input/val/*.png')
val_path.sort()
val_json = json.load(open('../input/val.json'))
val_label = [val_json[x]['label'] for x in val_json]
print(len(val_path), len(val_label))
val_loader = torch.utils.data.DataLoader(
SVHNDataset(val_path, val_label,
transforms.Compose([
transforms.Resize((60, 120)),
# transforms.ColorJitter(0.3, 0.3, 0.2),
# transforms.RandomRotation(5),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])),
batch_size=40,
shuffle=False,
num_workers=0,
)
# 定义模型
class SVHN_Model1(nn.Module):
def __init__(self):
super(SVHN_Model1, self).__init__()
# CNN提取特征模块
self.cnn = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
nn.ReLU(),
nn.MaxPool2d(2),
)
#
self.fc1 = nn.Linear(32 * 3 * 7, 11)
self.fc2 = nn.Linear(32 * 3 * 7, 11)
self.fc3 = nn.Linear(32 * 3 * 7, 11)
self.fc4 = nn.Linear(32 * 3 * 7, 11)
self.fc5 = nn.Linear(32 * 3 * 7, 11)
self.fc6 = nn.Linear(32 * 3 * 7, 11)
def forward(self, img):
feat = self.cnn(img)
feat = feat.view(feat.shape[0], -1)
c1 = self.fc1(feat)
c2 = self.fc2(feat)
c3 = self.fc3(feat)
c4 = self.fc4(feat)
c5 = self.fc5(feat)
c6 = self.fc6(feat)
return c1, c2, c3, c4, c5, c6
model = SVHN_Model1()
# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器
optimizer = torch.optim.Adam(model.parameters(), 0.005)
loss_plot, c0_plot = [], []
# 迭代10个Epoch
for epoch in range(2):
for data in train_loader:
c0, c1, c2, c3, c4, c5 = model(data[0])
data[1] = data[1].long()
loss = criterion(c0, data[1][:, 0]) + \
criterion(c1, data[1][:, 1]) + \
criterion(c2, data[1][:, 2]) + \
criterion(c3, data[1][:, 3]) + \
criterion(c4, data[1][:, 4])
#criterion(c5, data[1][:, 5])
loss /= 6
optimizer.zero_grad()
loss.backward()
optimizer.step()
# if i % 100 == 0:
print(loss)
loss_plot.append(loss.item())
c0_plot.append((c0.argmax(1) == data[1][:, 0]).sum().item() * 1.0 / c0.shape[0])
print(epoch)