- 使用AI API生成生动比喻句的实践指南
wd48564awd
人工智能python
技术背景介绍在日常交流和表达中,比喻句能够使文字更生动、更具感染力。与其费力地构思,不如利用AIAPI来快速生成生动的比喻句。在这篇文章中,我们将探讨如何使用AIAPI来生成形象的比喻句。核心原理解析AI文本生成技术,尤其是基于大型语言模型的API,如Anthropic的Claude或OpenAI的GPT,以其理解和生成自然语言文本的能力,能够根据输入提示生成富有创意和感染力的比喻句。这是通过学习
- [使用Claude API构建回文检查应用的指南]
qwe54165a4wd
easyui前端javascriptpython
技术背景介绍AnthropicAPI提供了对Claude的访问功能,Claude是一个强大的语言模型,能够回答各种文本相关的问题。通过该API,我们可以开发应用程序,比如让Claude帮助我们实现一个检查字符串是否为回文的Python函数。核心原理解析回文是指正读和反读都相同的字符串。通过ClaudeAPI,我们可以让Claude生成用于检查回文的Python代码。AnthropicAPI的最大优
- 构建一个针对SQL数据的问答系统
safHTEAHE
sqloracle数据库python
在如今的数据驱动时代,能够从结构化数据中提取信息并进行自然语言问答的能力是极其重要的。在这篇文章中,我们将探索如何使用大型语言模型(LLM)创建一个问答系统来查询SQL数据库中的表格数据。我们将通过对比链条和代理的实现来理解不同的建模策略。技术背景介绍结构化数据与非结构化数据的查询截然不同。对于结构化数据,我们往往通过创建和执行SQL查询来获取答案。通过这个指南,我们将展示如何使用链条和代理来开发
- AIGC - 深度洞察如何对大模型进行微调以满足特定需求
网罗开发
AI大模型人工智能AIGC
网罗开发(视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:COC上海社区主理
- 大模型推理:vllm多机多卡分布式本地部署
m0_74824755
面试学习路线阿里巴巴分布式
文章目录1、vLLM分布式部署docker镜像构建通信环境配置2、其他大模型部署工具3、问题记录参考文献单台机器GPU资源不足以执行推理任务时,一个方法是模型蒸馏量化,结果就是会牺牲些效果。另一种方式是采用多台机器多个GPU进行推理,资源不足就堆机器虽然暴力但也是个不错的解决方法。值得注意的是多机多卡部署的推理框架,也适用于单机多卡,单机单卡,这里不过多赘述。1、vLLM分布式部署我的需求是Ubu
- 如何正确学习软件工程
会振刀的程序员
程序人生程序人生软件工程师
如何正确学习软件工程友友们,又是一破干货来袭。我觉得我可能会被批斗,但我还是要表达一下自己的观点。1、前言之前看到我一朋友用jupyter训练模型。我问他:“你训练完然后呢”。他说:‘‘调参’’。我说你最终的目的是什么呢,他就不说话了。我想说的是,不管你是练习也好、开发也好,做之前一定是有目的的。没有目的的话那便没有了意义,那就没有做的必要。2、目的指向不管做任何行业任何事,最终的目的一定是以人为
- AIGC视频生成国产之光:ByteDance的PixelDance模型
好评笔记
AIGC-视频补档AIGC计算机视觉人工智能深度学习机器学习论文阅读面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言输入训练和推理时的数据处理总结相关工作视频生成长视频生成方法模型架构
- 使用Amazon Bedrock API调用Anthropic的Claude模型
dwa46a56w4d
easyui前端javascriptpython
在AI模型应用领域,亚马逊的BedrockAPI提供了便捷的方式来访问诸如Anthropic的Claude这样强大的模型。通过AmazonBedrock,开发者可以在云端直接调用Claude进行各种自然语言处理任务。本指南将引导您如何在Python中通过Bedrock来使用Claude模型。技术背景介绍Claude是由Anthropic开发的AI模型,提供强大的自然语言处理能力。通过AmazonB
- 【锂电池寿命】基于BP锂电池寿命预测(matlab)
大橘科研工作室
毕设锂电池方向(MATLAB版)matlab
【锂电池寿命】基于BP锂电池寿命预测(matlab)文章目录【锂电池寿命】基于BP锂电池寿命预测(matlab)一、引言1.1、研究背景1.2、研究意义二、文献综述2.1、锂电池寿命预测研究现状2.2、常见预测方法对比2.3、BP神经网络在寿命预测中的应用三、研究方法与数据准备3.1、BP神经网络模型设计3.2、数据来源与预处理3.3、特征提取与选择四、模型训练与验证4.1、训练过程4.2、模型验
- 使用AI工具链的实战指南
azzxcvhj
人工智能python
在这篇指南中,我们将深入探讨如何创建调用工具的链(Chains)和智能体(Agents)。工具可以是API、函数、数据库等等,它们能让模型的能力超越简单的文本或消息输出。使用模型与工具的关键在于如何正确地提示模型选择合适的工具并提供正确的输入。技术背景介绍在现代AI应用中,模型本身虽然强大,但通常需要结合其他工具来实现更复杂的功能。通过集成工具,我们可以扩展模型的能力,轻松实现如计算、数据查询和特
- 使用LangChain构建信息提取链
azzxcvhj
langchainpython深度学习
在现代文本处理应用中,从非结构化文本中提取结构化信息是一个重要且常见的任务。本教程将向您展示如何使用LangChain构建一个信息提取链。技术背景介绍随着大型语言模型(LLMs)的出现,它们的生成能力被广泛应用于各种信息提取任务。通过定义结构化的提取需求,我们可以利用这些模型从复杂的文本中获取所需的信息。核心原理解析提取链的核心在于定义清晰的提取需求,即通过Schema(数据模型)来告诉模型我们需
- Apache SeaTunnel 2.3.9 正式发布:多项新特性与优化全面提升数据集成能力
数据库
近日,ApacheSeaTunnel社区正式发布了最新版本2.3.9。本次更新新增了`Helm集群部署、Transform支持多表、Zeta新API、表结构转换、任务提交队列、分库分表合并、列转多行`等多个功能更新!作为一款开源、分布式的数据集成平台,本次版本通过新增功能、性能优化与问题修复,为开发者与企业用户带来了更加全面的支持。2.3.9版本下载:https://seatunnel.apach
- 亮相AICon,火山引擎边缘云揭秘边缘AI Agent探索与实践
边缘计算智能硬件ai开发
12月13-14日,AICon全球人工智能开发与应用大会在北京成功举办。火山引擎边缘智能技术负责人谢皓受邀出席大会,以《AIAgent在边缘云的探索与实践》为主题,与全球AI领域的资深专家,共同深入探讨大模型落地、具身智能、多模态大模型、AIAgent等前沿技术如何推动行业变革、引领未来发展。火山引擎边缘智能技术负责人谢皓指出,随着AI时代的到来,边缘智能由传统的物联网、智慧物联,逐渐演变成智能体
- 如何为LangChain开源项目做出贡献?
FADxafs
langchaineasyui前端python
技术背景介绍LangChain是一个快速发展的开源项目,旨在为开发者提供强大的语言模型链式调用功能。随着AI技术的不断革新,LangChain也在不断迭代和扩展功能。为了保持项目的活力和发展,我们欢迎不同背景的开发者进行贡献,无论是在代码、文档还是集成工具方面。核心贡献领域在LangChain项目中,您可以通过以下几种方式进行贡献:文档改进:提高项目的文档质量,包括示例代码、API说明等。代码贡献
- 为AI聊天工具添加一个知识系统 之40 总纲领和整体设计 之2 三种簿册(账簿/电话簿/户口簿)
一水鉴天
人工语言软件智能智能制造人工智能
本文要点前面给出的是项目式开发的项目“口号”,有点像包治百病的“万金油”。但在原型(原型式开发的一个原型口号)上分别有三个口号--注意:它们的表达和项目口号完全不同。逻辑上:所有模型model都是错的,但某些模型是有用的。数学上:所有程序prcedure严格来讲都是不精确的,但是有些程序非常接近用户的预期;语言上:所有表达expression都是含糊的,但任何语言都具有巨大的表达力。现在剩下的就是
- 智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之14 方案再探 之5:知识树三类节点对应的三种网络形式及其网络主机
一水鉴天
人工语言智能制造软件智能人工智能
本文要点前面讨论过(前面有错这里做了修正),三种簿册归档对应通过不同的网络形式(分布式、对等式和去中心式)。每种网络主机上分别提供:分布式控制脚本、对等式账本和备记手本通过以上讨论,div模型已经涵盖以下内容:从内容提供者(某个AI聊天工具,特定接口)到知识树及其三种节点(通用接口)到网络主机及其三种网络形式(节点专属操作接口)的要求。后面需要进一步为三者设计一个能实现耦合和解耦的程序需要特别说明
- 百万架构师第二十四课:漫谈分布式架构:分布式架构设计|JavaGuide
后端
主流架构模型-SOA架构和微服务架构领域驱动设计及业务驱动划分。分布式架构的基本理论CAP、BASE以及应用什么是分布式架构下的高可用设计分布式架构下的可伸缩设计构建高性能的分布式架构SOA架构和微服务架构ServiceOrientedArchitecture面向服务的架构,是架构模型,不是解决方案,是一种设计方法在这种方法下,有多个服务,而服务之间是相互依赖的或者通过一定的通讯机制去完成通讯的。
- 路径规划:环境适应性路径规划_(7).路径规划的不确定性处理
zhubeibei168
机器人(二)机器人计算机视觉机器人导航人工智能数码相机
路径规划的不确定性处理在路径规划中,不确定性是一个常见的问题,尤其是在动态和复杂的环境中。不确定性可以来源于多种因素,包括传感器误差、环境变化、动态障碍物等。处理不确定性是确保路径规划算法在实际应用中能够稳定、可靠运行的关键。本节将详细探讨路径规划中的不确定性处理方法,包括概率模型、鲁棒优化、重规划策略等。1.不确定性的来源在路径规划中,不确定性主要来源于以下几个方面:1.1传感器误差传感器是路径
- PyTorch 基础数据集:从理论到实践的深度学习基石
那年一路北
Pytorch理论+实践深度学习pytorch人工智能
一、引言深度学习作为当今人工智能领域的核心技术,在图像识别、自然语言处理、语音识别等众多领域取得了令人瞩目的成果。而在深度学习的体系中,数据扮演着举足轻重的角色,它是模型训练的基础,如同建筑的基石,决定了模型的性能和泛化能力。PyTorch作为当下最流行的深度学习框架之一,为开发者提供了丰富且强大的工具来处理数据集。本文将深入探讨PyTorch中的基础数据集,从深度学习中数据的重要性出发,详细介绍
- 【2025】拥抱未来 砥砺前行
摔跤猫子
其他年终总结拥抱未来砥砺前行深度思考
2024是怎样的一年2024在历史画卷上是波澜壮阔的一年,人工智能的浪潮来临,涌现出无数国产大模型。22年11月ChatGPT发布,它的出现如同在平静湖面上投下一颗巨石,激起了层层波澜,短短五天用户数就达到了100万,让整个世界为之侧目的同时也掀起了一场AI技术竞赛的浪潮。面对大模型这一蓝海,各方力量都试图搭上这趟时代的列车,争先恐后的相继开启布局。公司大模型名称发布时间澜舟科技孟子GPTV120
- 通过Amazon Bedrock API调用Anthropic Claude模型的实战指南
qwd41564qwd
python
在AI技术的飞速发展中,AmazonBedrockAPI为开发者提供了一种稳定可靠的方式来访问Anthropic的Claude模型。无论是启动新的项目还是集成AI解决方案,通过Bedrock调用Claude模型都提供了更广泛的应用场景和便利性。本文将指导您如何在Python中通过AmazonBedrock向Claude模型发起API调用。技术背景介绍Bedrock是Amazon推出的一个集成平台,
- BP神经网络概述及其预测的Python和MATLAB实现
追蜻蜓追累了
神经网络回归算法深度学习机器学习启发式算法lstmgru
##一、背景###1.1人工神经网络的起源人工神经网络(ArtificialNeuralNetwork,ANN)受生物神经网络的启发,模拟大脑神经元之间的连接和信息处理方式。尽管早在1943年就有学者如McCulloch和Pitts提出了数学模型,但人工神经网络真正被广泛研究是在20世纪80年代。###1.2BP神经网络的兴起反向传播(BackPropagation,简称BP)算法是20世纪80年
- 【深度学习】Pytorch:导入导出模型参数
T0uken
深度学习pytorch人工智能
PyTorch是深度学习领域中广泛使用的框架,熟练掌握其模型参数的管理对于模型训练、推理以及部署非常重要。本文将全面讲解PyTorch中关于模型参数的操作,包括如何导出、导入以及如何下载模型参数。什么是模型参数模型参数是指深度学习模型中需要通过训练来优化的变量,如神经网络中的权重和偏置。这些参数存储在PyTorch的torch.nn.Module对象中,通过以下方式访问:importtorchim
- Spring AI - 对话模型
还是转转
spring人工智能java
目录:SpringAI框架介绍SpringAI对话模型核心API简介SpringAI提供了很多便利的功能,主要如下:AIModelAPI“ModelAPI”提供了聊天、文本转图像、音频转录、文本转语音、嵌入等功能,且不局限于某个固定的大模型提供商,如OpenAI,Microsoft,Amazon,Google,AmazonBedrock,HuggungFace等等。下面是支持的AI模型的示意图:C
- 蓝桥杯备赛笔记(十) 背包问题
小魏´•ﻌ•`
蓝桥杯C++蓝桥杯笔记职场和发展
(1)背包模型有一个体积为V的背包,商店有n个物品,每个物品有一个价值v和体积w,每个物品只能被拿一次,问能够装下物品的最大价值。这里每一种物品只有两种状态,即“拿”或“不拿”。设状态dp[i][j]表示到第i个物品为止,拿的物品总体积为j的情况下的最大价值。转移方程为:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w]+v)如果不拿物品i,那么最大价值就是dp[i-1][j
- Python气象数据分析:风速预报订正、台风预报数据智能订正、机器学习预测风电场的风功率、浅水模型、预测ENSO等
小艳加油
大气科学python人工智能气象机器学习
目录专题一Python和科学计算基础专题二机器学习和深度学习基础理论和实操专题三气象领域中的机器学习应用实例专题四气象领域中的深度学习应用实例更多应用Python是功能强大、免费、开源,实现面向对象的编程语言,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能,这些优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Py
- YOLOv8/YOLOv11使用web界面推理自己的模型,Gradio框架快速搭建
挂科边缘
YOLOv8改进YOLO前端计算机视觉目标检测人工智能python
前言Gradio是一个开源Python库,用于快速构建和共享机器学习模型的Web界面。开发者可以通过简单的Python代码将机器学习模型封装成交互式应用,无需复杂的设置即可在浏览器中使用自己训练好模型。接下来教你使用Gradio框架构建一个简单Web界面推理YOLOv8/YOLOv11模型。话不多说上检测结果:一、YOLOv8/YOLOv11源码下载YOLOv8源码下载:官网打不开的话,从我的网盘
- 【数据集】全球预报系统GFS概述:数据下载及处理
WW、forever
数据集GFS
【数据集】全球预报系统GFS概述:数据下载及处理GFSweatherdata数据下载NOAANOMADSNOAA数据处理基于Python完成数据重命名参考GFSweatherdata全球预报系统GFS(GlobalForecastSystem)是美国国家海洋和大气管理局(NOAA)开发和运行的数值天气预报模型。它是一个全球性的大气模式,提供中长期天气预报。以下是一些关键点:全球覆盖:GFS提供全球
- RT-DETR改进策略【Neck】| PRCV 2023,SBA(Selective Boundary Aggregation):特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题
Limiiiing
RT-DETR改进专栏人工智能计算机视觉深度学习RT-DETR
一、本文介绍本文主要利用DuAT中的SBA模块优化RT-DETR的目标检测网络模型。SBA模块借鉴了医疗图像分割中处理边界信息的独特思路,通过创新性的结构设计,在维持合理计算复杂度的基础上,巧妙融合浅层的边界细节特征与深层的语义信息,实现边界特征的精准提取与语义信息的有效整合。将其应用于RT-DETR的改进过程中,能够使模型着重聚焦于目标物体的边界区域,降低背景及其他无关信息的影响,强化目标物体的
- 使用 LangChain 构建多PDF文档聊天应用
jkgSFS
langchainpdfeasyuipython
随着大型语言模型(LLMs)的普及,如何将它们应用于文档处理成为了热门话题之一。本文将通过一个教程,展示如何使用LangChain构建一个能够处理多个PDF文档并与之对话的应用。技术背景介绍LangChain是一个广受欢迎的库,能够帮助开发者轻松地与LLMs和不同的嵌入技术进行整合。它提供了方便的接口和工具,使得复杂的自然语言处理任务变得简单高效。核心原理解析我们将利用LangChain来读取多个
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s