参数和特征的提取:
在tf中,参与训练的参数可用 tf.trainable_variables()提取出来,最后一条语句就是提取某层的数据输出作为特征。
注意:这个程序并没有经过训练,因此提取出的参数只是初始化的参数。
可以先将训练的模型进行保存,之后在加载模型测试并获取特征
# -*- coding: utf-8 -*-
"""
Created on Sat Jun 3 12:07:59 2017
@author: Administrator
"""
import tensorflow as tf
from skimage import io,transform
import numpy as np
#-----------------构建网络----------------------
#占位符
x=tf.placeholder(tf.float32,shape=[None,100,100,3],name='x')
y_=tf.placeholder(tf.int32,shape=[None,],name='y_')
#第一个卷积层(100——>50)
conv1=tf.layers.conv2d(
inputs=x,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
pool1=tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
#第二个卷积层(50->25)
conv2=tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
pool2=tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
#第三个卷积层(25->12)
conv3=tf.layers.conv2d(
inputs=pool2,
filters=128,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
pool3=tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2)
#第四个卷积层(12->6)
conv4=tf.layers.conv2d(
inputs=pool3,
filters=128,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
pool4=tf.layers.max_pooling2d(inputs=conv4, pool_size=[2, 2], strides=2)
re1 = tf.reshape(pool4, [-1, 6 * 6 * 128])
#全连接层
dense1 = tf.layers.dense(inputs=re1,
units=1024,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.nn.l2_loss)
dense2= tf.layers.dense(inputs=dense1,
units=512,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.nn.l2_loss)
logits= tf.layers.dense(inputs=dense2,
units=5,
activation=None,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.nn.l2_loss)
#---------------------------网络结束---------------------------
#%%
#取出所有参与训练的参数
params=tf.trainable_variables()
print("Trainable variables:------------------------")
#循环列出参数
for idx, v in enumerate(params):
print(" param {:3}: {:15} {}".format(idx, str(v.get_shape()), v.name))
#%%
#读取图片
img=io.imread('d:/cat.jpg')
#resize成100*100
img=transform.resize(img,(100,100))
#三维变四维(100,100,3)-->(1,100,100,3)
img=img[np.newaxis,:,:,:]
img=np.asarray(img,np.float32)
sess=tf.Session()
sess.run(tf.global_variables_initializer())
#提取最后一个全连接层的参数 W和b
W=sess.run(params[26])
b=sess.run(params[27])
#提取第二个全连接层的输出值作为特征
fea=sess.run(dense2,feed_dict={x:img})