cd /export/servers
tar spark-2.2.0-bin-2.6.0-cdh5.14.0.tgz
mv spark-2.2.0-bin-2.6.0-cdh5.14.0 spark
如果有权限问题,可以修改为root,方便学习时操作,实际中使用运维分配的用户和权限即可
chown -R root /export/servers/spark
chgrp -R root /export/servers/spark
解压目录说明:
bin 可执行脚本
conf 配置文件
data 示例程序使用数据
examples 示例程序
jars 依赖 jar 包
python pythonAPI
R R 语言 API
sbin 集群管理命令
yarn 整合yarn需要的东西
直接启动bin目录下的spark-shell:
./spark-shell
spark-shell说明
1.直接使用./spark-shell
表示使用local 模式启动,在本机启动一个SparkSubmit进程
2.还可指定参数 --master,如:
spark-shell --master local[N] 表示在本地模拟N个线程来运行当前任务
spark-shell --master local[*] 表示使用当前机器上所有可用的资源
3.不携带参数默认就是
spark-shell --master local[*]
4.后续还可以使用--master指定集群地址,表示把任务提交到集群上运行,如
./spark-shell --master spark://node01:7077
5.退出spark-shell
使用 :quit
准备数据
vim /root/words.txt
hello me you her
hello you her
hello her
hello
val textFile = sc.textFile("file:///root/words.txt")
val counts = textFile.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)
counts.collect//收集结果
// Array[(String, Int)] = Array((you,2), (hello,4), (me,1), (her,3))
准备数据
上传文件到hdfs
hadoop fs -put /root/words.txt /wordcount/input/words.txt
目录如果不存在可以创建
hadoop fs -mkdir -p /wordcount/input
结束后可以删除测试文件夹
hadoop fs -rm -r /wordcount
val textFile = sc.textFile("hdfs://node01:8020/wordcount/input/words.txt")
val counts = textFile.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)
counts.saveAsTextFile("hdfs://node01:8020/wordcount/output")
node01:master
node02:slave/worker
node03:slave/worker
1、修改Spark配置文件
cd /export/servers/spark/conf
mv spark-env.sh.template spark-env.sh
vim spark-env.sh
#配置java环境变量
export JAVA_HOME=/export/servers/jdk1.8
#指定spark Master的IP
export SPARK_MASTER_HOST=node01
#指定spark Master的端口
export SPARK_MASTER_PORT=7077
mv slaves.template slaves
vim slaves
node02
node03
2、配置spark环境变量 (建议不添加,避免和Hadoop的命令冲突)
将spark添加到环境变量,添加以下内容到 /etc/profile
export SPARK_HOME=/export/servers/spark
export PATH=$PATH:$SPARK_HOME/bin
注意:
hadoop/sbin 的目录和 spark/sbin 可能会有命令冲突:
start-all.sh stop-all.sh
解决方案:
1.把其中一个框架的 sbin 从环境变量中去掉;
2.改名 hadoop/sbin/start-all.sh 改为: start-all-hadoop.sh
3、通过scp 命令将配置文件分发到其他机器上
scp -r /export/servers/spark node02:/export/servers
scp -r /export/servers/spark node03:/export/servers
scp /etc/profile root@node02:/etc
scp /etc/profile root@node03:/etc
source /etc/profile 刷新配置
4、启动和停止
在主节点上启动spark集群
/export/servers/spark/sbin/start-all.sh
在主节点上停止spark集群
/export/servers/spark/sbin/stop-all.sh
在 master 安装节点上启动和停止 master:
start-master.sh
stop-master.sh
在 Master 所在节点上启动和停止worker(work指的是slaves 配置文件中的主机名)
start-slaves.sh
stop-slaves.sh
5、查看web界面
正常启动spark集群后,查看spark的web界面,查看相关信息。
http://node01:8080/
6、测试
使用集群模式运行Spark程序读取HDFS上的文件并执行WordCount
集群模式启动spark-shell
/export/servers/spark/bin/spark-shell --master spark://node01:7077
运行程序
sc.textFile("hdfs://node01:8020/wordcount/input/words.txt")
.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)
.saveAsTextFile("hdfs://node01:8020/wordcount/output2")
SparkContext web UI
http://node01:4040/jobs/
注意
集群模式下程序是在集群上运行的,不要直接读取本地文件,应该读取hdfs上的
因为程序运行在集群上,具体在哪个节点上我们运行并不知道,其他节点可能并没有那个数据文件
Spark Standalone集群是Master-Slaves架构的集群模式,和大部分的Master-Slaves结构集群一样,存在着Master单点故障的问题。
如何解决这个单点故障的问题,Spark提供了两种方案:
1.基于文件系统的单点恢复(Single-Node Recovery with Local File System)--只能用于开发或测试环境。
2.基于zookeeper的Standby Masters(Standby Masters with ZooKeeper)--可以用于生产环境。
该HA方案使用起来很简单,首先启动一个ZooKeeper集群,然后在不同节点上启动Master,注意这些节点需要具有相同的zookeeper配置。
●先停止Sprak集群
/export/servers/spark/sbin/stop-all.sh
●在node01上配置:
vim /export/servers/spark/conf/spark-env.sh
●注释掉Master配置
#export SPARK_MASTER_HOST=node01
●在spark-env.sh添加SPARK_DAEMON_JAVA_OPTS,内容如下:
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=node01:2181,node02:2181,node03:2181 -Dspark.deploy.zookeeper.dir=/spark" |
参数说明
spark.deploy.recoveryMode:恢复模式
spark.deploy.zookeeper.url:ZooKeeper的Server地址
spark.deploy.zookeeper.dir:保存集群元数据信息的文件、目录。包括Worker、Driver、Application信息。
●scp到其他节点
scp /export/servers/spark/conf/spark-env.sh node02:/export/servers/spark/conf/
scp /export/servers/spark/conf/spark-env.sh node03:/export/servers/spark/conf/
zkServer.sh status
zkServer.sh stop
zkServer.sh start
●node01上启动Spark集群执行
/export/servers/spark/sbin/start-all.sh
●在node02上再单独只起个master:
/export/servers/spark/sbin/start-master.sh
注意:
在普通模式下启动spark集群
只需要在主节点上执行start-all.sh 就可以了
在高可用模式下启动spark集群
先需要在任意一台主节点上执行start-all.sh
然后在另外一台主节点上单独执行start-master.sh
●查看node01和node02
http://node01:8080/
http://node02:8080/
可以观察到有一台状态为StandBy
●测试主备切换
1.在node01上使用jps查看master进程id
2.使用kill -9 id号强制结束该进程
3.稍等片刻后刷新node02的web界面发现node02为Alive
●测试集群模式提交任务
1.集群模式启动spark-shell
/export/servers/spark/bin/spark-shell --master spark://node01:7077,node02:7077
2.运行程序
sc.textFile("hdfs://node01:8020/wordcount/input/words.txt")
.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)
.saveAsTextFile("hdfs://node01:8020/wordcount/output3")
1.安装启动Hadoop(需要使用HDFS和YARN,已经ok)
2.安装单机版Spark(已经ok)
注意:不需要集群,因为把Spark程序提交给YARN运行本质上是把字节码给YARN集群上的JVM运行,但是得有一个东西帮我去把任务提交上个YARN,所以需要一个单机版的Spark,里面的有spark-shell命令,spark-submit命令
3.修改配置:
在spark-env.sh ,添加HADOOP_CONF_DIR配置,指明了hadoop的配置文件的位置
vim /export/servers/spark/conf/spark-env.sh
export HADOOP_CONF_DIR=/export/servers/hadoop/etc/hadoop
在企业生产环境中大部分都是cluster部署模式运行Spark应用
Spark On YARN的Cluster模式 指的是Driver程序运行在YARN集群上
Driver是什么:
运行应用程序的main()函数并创建SparkContext的进程
spark-shell是一个简单的用来测试的交互式窗口
spark-submit用来提交打成jar包的任务
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/examples/jars/spark-examples_2.11-2.2.0.jar \
10
学习测试时使用,开发不用
Spark On YARN的Client模式 指的是Driver程序运行在提交任务的客户端
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/examples/jars/spark-examples_2.11-2.2.0.jar \
10
Cluster和Client模式最本质的区别是:Driver程序运行在哪里!
运行在YARN集群中就是Cluster模式,
运行在客户端就是Client模式
还有由本质区别延伸出来的区别
cluster模式:生产环境中使用该模式
1.Driver程序在YARN集群中
2.应用的运行结果不能在客户端显示
3.该模式下Driver运行ApplicattionMaster这个进程中,如果出现问题,yarn会重启ApplicattionMaster(Driver)
client模式:
1.Driver运行在Client上的SparkSubmit进程中
2.应用程序运行结果会在客户端显示
spark-shell是Spark自带的交互式Shell程序,方便用户进行交互式编程,用户可以在该命令行下可以用scala编写spark程序,适合学习测试时使用!
示例
spark-shell可以携带参数
spark-shell --master local[N] 数字N表示在本地模拟N个线程来运行当前任务
spark-shell --master local[*] *表示使用当前机器上所有可用的资源
默认不携带参数就是--master local[*]
spark-shell --master spark://node01:7077,node02:7077 表示运行在集群上
spark-submit命令用来提交jar包给spark集群/YARN
spark-shell交互式编程确实很方便我们进行学习测试,但是在实际中我们一般是使用IDEA开发Spark应用程序打成jar包交给Spark集群/YARN去执行。
示例:计算π
cd /export/servers/spark
/export/servers/spark/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://node01:7077 \
--executor-memory 1g \
--total-executor-cores 2 \
/export/servers/spark/examples/jars/spark-examples_2.11-2.2.0.jar \
10
参数总结
Master参数形式
Master形式 |
解释 |
local |
本地以一个worker线程运行(例如非并行的情况). |
local[N] |
本地以K worker 线程 (理想情况下, N设置为你机器的CPU核数). |
local[*] |
本地以本机同样核数的线程运行. |
spark://HOST:PORT |
连接到指定的Spark standalone cluster master. 端口是你的master集群配置的端口,缺省值为7077. |
mesos://HOST:PORT |
连接到指定的Mesos 集群. Port是你配置的mesos端口, 默认5050. 或者使用ZK,格式为 mesos://zk://.... |
yarn-client |
以client模式连接到YARN cluster. 集群的位置基于HADOOP_CONF_DIR 变量找到. |
yarn-cluster |
以cluster模式连接到YARN cluster. 集群的位置基于HADOOP_CONF_DIR 变量找到. |
其他参数示例
--master spark://node01:7077 指定 Master 的地址
--name "appName" 指定程序运行的名称
--class 程序的main方法所在的类
--jars xx.jar 程序额外使用的 jar 包
--driver-memory 512m Driver运行所需要的内存, 默认1g
--executor-memory 2g 指定每个 executor 可用内存为 2g, 默认1g
--executor-cores 1 指定每一个 executor 可用的核数
--total-executor-cores 2 指定整个集群运行任务使用的 cup 核数为 2 个
--queue default 指定任务的对列
--deploy-mode 指定运行模式(client/cluster)
注意:
如果 worker 节点的内存不足,那么在启动 spark-submit的时候,就不能为 executor分配超出 worker 可用的内存容量。
如果--executor-cores超过了每个 worker 可用的 cores,任务处于等待状态。
如果--total-executor-cores即使超过可用的 cores,默认使用所有的。以后当集群其他的资源释放之后,就会被该程序所使用。
如果内存或单个 executor 的 cores 不足,启动 spark-submit 就会报错,任务处于等待状态,不能正常执行。