最近开始仔细玩了一下pytorch,发现里面有个BUG之前都没有发现。
在测试torch最基本的示例的情况下,居然碰到了个pytorch无法转化numpy为Tensor的问题,呈现的问题如下:
ndscbigdata@ndscbigdata:~/work/change/AI$ python
Python 3.6.1 (default, Jul 14 2017, 17:08:44)
[GCC 4.8.4] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> import numpy as np
>>> a = np.ones(5)
>>> a
array([ 1., 1., 1., 1., 1.])
>>> b=torch.form_numpy(a)
Traceback (most recent call last):
File "", line 1, in
AttributeError: module 'torch' has no attribute 'form_numpy'
>>> print(torch.__version__)
0.2.0_3
在torch的主页上有这样一句话,经过仔细分析才明白其中的意思:
Pylint isn't picking up that torch
has the member function from_numpy
. It's because torch.from_numpy
is actually torch._C.from_numpy
as far as Pylint is concerned.
本身而言,pytorch并不直接包含from_numpy这个方法,而需要通过_C这样的命名空间来调用。
因此利用._C的办法进行测试,果然顺利通过。
>>> b=torch.form_numpy(a)
Traceback (most recent call last):
File "", line 1, in
AttributeError: module 'torch' has no attribute 'form_numpy'
>>> print(torch.__version__)
0.2.0_3
>>> c = torch.Tensor(3,3)
>>> c
1.00000e-32 *
-4.4495 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
[torch.FloatTensor of size 3x3]
>>> b = torch._C.from_numpy(a)
>>> b
1
1
1
1
1
[torch.DoubleTensor of size 5]
For reference, you can have Pylint ignore these by wrapping "problematic" calls with the following comments.
# pylint: disable=E1101
tensor = torch.from_numpy(np_array)
# pylint: enable=E1101
于是重新再次安装一下这个工具。
pip install pylint
然后再测试一下,发现就正常了。
ndscbigdata@ndscbigdata:~/work/change/AI$ python
Python 3.6.1 (default, Jul 14 2017, 17:08:44)
[GCC 4.8.4] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> import numpy as np
>>> a = np.ones(5)
>>> b=torch.from_numpy(a)
>>> b
1
1
1
1
1
[torch.DoubleTensor of size 5]
>>>