抠图

算法

Background-Matting:The World is Your Green Screen(2020)

[Background-Matting]
[Paper]
[Project]

分类

  • Traditional approaches
    • simpling-based techniques
    • propagation-based techniques
  • Learning-based approaches
    • trimap based methods
      • Context aware matting(CAM)
      • Index Matting(IM)
    • automatic matting algorithm
      • Late Fusion Matting(LFM)
  • Matting with known natural background
  • Video Matting

历史

  • 2019
    • Disentangled image matting
    • Context-aware image matting for simultaneous foreground and alpha estimation
    • Learning to index for deep image matting
    • A late fusion cnn for digital matting
  • 2018
    • Semantic soft segmentation
    • Encoder-decoder with atrous separable convlution for semantic image segmentation
    • Semantic human matting
    • Alpha-gan: Generative adversarial networks for natural image matting
  • 2017
    • Designing effective inter-pixel information flow for natural image matting
    • Deep image matting
    • Fast deep matting for portrait animation on mobile phone
  • 2016
    • Natural image matting using deep convolutional neural networks
    • Deep automatic portrait matting
  • 2013
    • KNN matting
  • 2011
    • A global sampling method for alpha matting
    • Nonlocal matting
  • 2010
    • Shared sampling for real-time alpha matting
    • Fast matting using large kernel matting laplacian matrics
  • 2008
    • Spectral matting
  • 2007
    • A closed-form solution to natural image matting
  • 2004
    • A bayesian approach to digital matting

网络结构

At the core of our approach is a deep matting network G that extracts foreground color and alpha for a given input frame, augmented with background, soft segmentation, and (optionally nearby video frames), and a discriminator network D that guides the training to generate realistic results.

抠图_第1张图片

损失函数

抠图_第2张图片

抠图_第3张图片

抠图_第4张图片

Attention-Guided Hierarchical Structure Aggregation for Image Matting(2020)

[CVPR2020-HAttMatting]
[Attention-Guided Hierarchical Structure Aggregation for Image Matting]

A Late Fusion CNN for Digital Matting(2019)

[FusionMatting]

[A Late Fusion CNN for Digital Matting]

[《A Late Fusion CNN for Digital Matting》论文阅读]

[[质疑][CVPR2019][A Late Fusion… Matting]]

[澄清误解-对CVPR 2019 LFM论文质疑的回复]

[阿里巴巴-浙江大学前言技术联合研究中心]

LFM是端到端的神经网络,输入包含前景的图像,输出为前景的alpha遮罩。利用神经网络来预测三个图:前景概率图、背景概率图和混合权重图。根据混合权重图将前景概率图和背景概率图进行融合得到alpha遮罩。需要训练的网络有分割网络预训练、融合网络预训练以及端到端的联合训练,训练损失加在输出alpha遮罩上。

抠图_第5张图片

抠图_第6张图片

抠图_第7张图片

Natural Image Matting via Guided Contextual Attention(2020)

[GCA-Matting]
[Natural Image Matting via Guided Contextual Attention]

网络结构

抠图_第8张图片

  • GCA

抠图_第9张图片

损失函数

抠图_第10张图片

Deep image matting(2017)

[pytorch-deep-image-matting]

[Deep Image Matting]

[Project]

[[论文阅读]Deep Image matting(以及实现细节讨论)]

抠图_第11张图片

抠图_第12张图片

抠图_第13张图片

抠图_第14张图片

抠图_第15张图片

数据集

[人像分割不靠谱汇总【1】]
Matting 是将前景和背景进行软分割的方法,目标是找出前景和背景以及它们之间的融合程度。

抠图_第16张图片

注:trimap一般都是由matte扩张生成

汇总

[人像分割不靠谱汇总【1】]

挑战

[Alpha Matting Evaluation Website]

Evalution

  • SAD(sum of absolution difference)
  • MSE(mean square error)

抠图_第17张图片

抠图_第18张图片

References

抠图_第19张图片

抠图_第20张图片

抠图_第21张图片

抠图_第22张图片

抠图_第23张图片

你可能感兴趣的:(深度学习)