目录
一 .方法
方法声明格式:
方法的调用方式:
注意事项
练习代码
二.方法的重载(overload)
雷区
练习代码
三.递归结构
递归结构包括两个部分:
求n!的代码
递归的缺陷
四.面向过程和面向对象
·面向对象和面向过程的总结
· 面向对象思考方式
建议
五.对象的进化史(数据管理的方式)
·数据无管理时代
·数组管理和企业部门制
·对象和企业项目制
总结
六.对象和类的概念
总结
七.类的定义
属性
方法
构造方法
一个简单的类
一个典型类的定义和UML图
内存分析
八.垃圾回收机制
方法就是一段用来完成特定功能的代码片段,类似于其它语言的函数。是学习的核心
方法用于定义该类或该类的实例的行为特征和功能实现。 方法是类和对象行为特征的抽象。方法很类似于面向过程中的函数。面向过程中,函数是最基本单位,整个程序由一个个函数调用组成。面向对象中,整个程序的基本单位是类,方法是从属于类和对象的。
1 2 3 |
|
对象名.方法名(实参列表)
方法的详细说明
1. 形式参数:在方法声明时用于接收外界传入的数据。
2. 实参:调用方法时实际传给方法的数据。
3. 返回值:方法在执行完毕后返还给调用它的环境的数据。无返回值时用void。
4. 返回值类型:事先约定的返回值的数据类型,如无返回值,必须显示指定为为void。
1. 实参的数目、数据类型和次序必须和所调用的方法声明的形式参数列表匹配。
2. return 语句终止方法的运行并指定要返回的数据。
3. Java中进行方法调用中传递参数时,遵循值传递的原则(传递的都是数据的副本):
4. 基本类型传递的是该数据值的copy值。
5. 引用类型传递的是该对象引用的copy值,但指向的是同一个对象。
/**
* 测试方法的基本使用
* @author 锤子布
*
*/
public class TestMethod {
public static void main(String[] args) {
//通过对象调用普通方法
TestMethod tm=new TestMethod();
tm.printSomthing();
int c =tm.add(30, 40, 50)+1000;
System.out.println(c);//传入实参
}
void printSomthing() {
System.out.println("somthing");
System.out.println("somthing");
System.out.println("somthing");
}
int add(int a,int b,int c) {
int sum=a+b+c;
System.out.println(sum);
return sum;//return:结束方法的运行,返回值
}
}
方法的重载是指一个类中可以定义多个方法名相同,但参数不同的方法。 调用时,会根据不同的参数自动匹配对应的方法。
重载的方法,实际是完全不同的方法,只是名称相同而已!是独立的方法。
构成方法重载的条件:
1.不同的含义:形参类型、形参个数、形参顺序不同
2.只有返回值不同不构成方法的重载
如:
1 |
|
不构成方法重载
3.只有形参的名称不同,不构成方法的重载
如:
1 |
|
不构成方法重载
public class Test21 {
public static void main(String[] args) {
// 我们已经见过的方法的重载
System.out.println();// 0个参数
System.out.println(1);// 参数是1个int
System.out.println(3.0);// 参数是1个double
}
/** 求和的方法 */
public static int add(int n1, int n2) {
int sum = n1 + n2;
return sum;
}
// 方法名相同,参数个数不同,构成重载
public static int add(int n1, int n2, int n3) {
int sum = n1 + n2 + n3;
return sum;
}
// 方法名相同,参数类型不同,构成重载
public static double add(double n1, int n2) {
double sum = n1 + n2;
return sum;
}
// 方法名相同,参数顺序不同,构成重载
public static double add(int n1, double n2) {
double sum = n1 + n2;
return sum;
}
//编译错误:只有返回值不同,不构成方法的重载
public static double add(int n1, int n2) {
double sum = n1 + n2;
return sum;
}
//编译错误:只有参数名称不同,不构成方法的重载
public static int add(int n2, int n1) {
double sum = n1 + n2;
return sum;
}
}
递归是一种常见的解决问题的方法,即把问题逐渐简单化。递归的基本思想就是“自己调用自己”,一个使用递归技术的方法将会直接或者间接的调用自己。
利用递归可以用简单的程序来解决一些复杂的问题。比如:斐波那契数列的计算、汉诺塔、快排等问题。
1.定义递归头。解答:什么时候不调用自身方法。如果没有头,将陷入死循环,也就是递归的结束条件。
2.递归体。解答:什么时候需要调用自身方法。
/**
* 测试递归
* @author 锤子布
*
*/
public class TestRecursion {
public static void main(String[] args) {
long d1=System.currentTimeMillis();
System.out.println("阶乘的结果是"+loop(15));
long d2=System.currentTimeMillis();
System.out.println(d2-d1);
}
static int count=0;
static void a() {
System.out.println("a");
count++;
if(count<10) {
a();//递归体,
}else {
return;//递归头
}
}
static int loop(int a) {
if(a==1) {
return 1;//递归头
}else {
return a*loop(a-1);//递归体
}
}
}
简单的程序是递归的优点之一。但是递归调用会占用大量的系统堆栈,内存耗用多,在递归调用层次多时速度要比循环慢的多,所以在使用递归时要慎重。
任何能用递归解决的问题也能使用迭代解决。当递归方法可以更加自然地反映问题,并且易于理解和调试,并且不强调效率问题时,可以采用递归;
在要求高性能的情况下尽量避免使用递归,递归调用既花时间又耗内存。
面向过程(Procedure Oriented)和面向对象(Object Oriented,OO)都是对软件分析、设计和开发的一种思想,并非是对立的。早期面向简单的问题,专注于其过程。
面向过程思想思考问题时,我们首先思考“怎么按步骤实现?”并将步骤对应成方法,一步一步,最终完成。 这个适合简单任务,不需要过多协作的情况下。比如,如何开车?我们很容易就列出实现步骤:
1. 发动车 2. 挂挡 3.踩油门 4. 走你
面向过程适合简单、不需要协作的事务。适合不需要协作的内容。
但是当我们思考比较复杂的问题,比如“如何造车?”,就会发现列出1234这样的步骤,是不可能的。那是因为,造车太复杂,需要很多协作才能完成。此时面向对象思想就应运而生了。
面向对象(Object)思想更契合人的思维模式。我们首先思考的是“怎么设计这个事物?” 比如思考造车,我们就会先思考“车怎么设计?”,而不是“怎么按步骤造车的问题”。这就是思维方式的转变。
一、面向对象思想思考造车,发现车由如下对象组成:
1. 轮胎
2. 发动机
3. 车壳
4. 座椅
5. 挡风玻璃
为了便于协作,我们找轮胎厂完成制造轮胎的步骤,发动机厂完成制造发动机的步骤;这样,发现大家可以同时进行车的制造,最终进行组装,大大提高了效率。但是,具体到轮胎厂的一个流水线操作,仍然是有步骤的,还是离不开面向过程思想!
因此,面向对象可以帮助我们从宏观上把握、从整体上分析整个系统。 但是,具体到实现部分的微观操作(就是一个个方法),仍然需要面向过程的思路去处理。
千万不要把面向过程和面向对象对立起来。他们是相辅相成的。面向对象离不开面向过程!
1、都是解决问题的思维方式,都是代码组织的方式。面向对象适合组织大规模代码,最终还会简化为一步步的方法,仍然还需要面向过程。
2、解决简单问题可以使用面向过程
3、解决复杂问题:宏观上使用面向对象把握,微观处理上仍然是面向过程。方法和控制语句就是面向过程的产物。
遇到复杂问题,先从问题中找名词,然后确立这些名词哪些可以作为类,再根据问题需求确定的类的属性和方法,确定类之间的关系。
1.面向对象具有三大特征:封装性、继承性和多态性,而面向过程没有继承性和多态性,并且面向过程的封装只是封装功能,而面向对象可以封装数据和功能。所以面向对象优势更明显。
2.一个经典的比喻:面向对象是盖浇饭、面向过程是蛋炒饭。盖浇饭的好处就是“菜”“饭”分离,从而提高了制作盖浇饭的灵活性。饭不满意就换饭,菜不满意换菜。用软件工程的专业术语就是“可维护性”比较好,“饭” 和“菜”的耦合度比较低。
事物的发展总是遵循“量变引起质变”的哲学原则;企业管理和数据管理、甚至社会管理也有很多共通的地方。类比企业发展,更容易理解为什么会产生“对象”这个概念。
最初的计算机语言只有基本变量(类似我们学习的基本数据类型),用来保存数据。那时候面对的数据非常简单,只需要几个变量即可搞定;这个时候不涉及“数据管理”的问题。同理,就像在企业最初发展阶段只有几个人,不涉及管理问题,大家闷头做事就OK了。
企业发展中,员工多了怎么办?我们很自然的想法就是归类,将类型一致的人放到一起;企业中,会将都做销售工作的放到销售部管理;会将研发软件的放到开发部管理。同理在编程中,变量多了,我们很容易的想法就是“将同类型数据放到一起”, 于是就形成了“数组”的概念,单词对应“array”。 这种“归类”的思想,便于管理数据、管理人。
企业继续发展,面对的场景更加复杂。一个项目可能需要经常协同多个部门才能完成工作;一个项目从谈判接触可能需要销售部介入;谈判完成后,需求调研开始,研发部和销售部一起介入;开发阶段需要开发部和测试部互相配合敏捷开发,同时整个过程财务部也需要跟进。在企业中,为了便于协作和管理,很自然就兴起了“项目制”,以项目组的形式组织,一个项目组可能包含各种类型的人员。 一个完整的项目组,麻雀虽小五脏俱全,就是个创业公司甚至小型公司的编制,包含行政后勤人员、财务核算人员、开发人员、售前人员、售后人员、测试人员、设计人员等等。事实上,华为、腾讯、阿里巴巴等大型公司内部都是采用这种“项目制”的方式进行管理。
同理,计算机编程继续发展,各种类型的变量更加多了,而且对数据的操作(指的就是方法,方法可以看做是对数据操作的管理)也复杂了,怎么办?
为了便于协作和管理,我们“将相关数据和相关方法封装到一个独立的实体”,于是“对象”产生了,我觉得可以比作一个独立的人。 比如,我们的一个学生对象:
有属性(静态特征):年龄:18,姓名:高淇,学号:1234
也可以有方法(动态行为):学习,吃饭,考试
请大家举一反三,根据上表理解一下企业的进化史,会发现大道至简。原来,数据管理、企业管理、社会发展也是有很多共通的地方。“量变引起质变,不同的数量级必然采用不同的管理模式”。
表4-1对象进化史和企业进化史 |
||||
对象进化史 |
企业进化史 |
抽象类比 |
||
数据少时 |
基本类型数据阶段 |
人少时 |
作坊时代 |
无管理时代 (对数据或人没有任何管理) |
数据多了 |
数组 同类型数据存到数组中 |
人多了 |
部门 工作行为一样的在一个部门 |
弱管理时代 (将同类型数据集中进行管理) |
数据多了 数据关系/操作复杂了 |
类和对象 将数据和相关的操作行为放到一起 |
人多了, 业务更复杂, 人的工作行为也复杂 |
项目组 将不同类型的人放到一起实现统一管理 |
强管理时代 (将数据和数据操作/人和人的行为 放到一起管理) |
1.对象说白了也是一种数据结构(对数据的管理模式),将数据和数据的行为放到了一起。
2.在内存上,对象就是一个内存块,存放了相关的数据集合!
3.对象的本质就一种数据的组织方式!
类可以看做是一个模版,或者图纸,系统根据类的定义来造出对象。我们要造一个汽车,怎么样造?类就是这个图纸,规定了汽车的详细信息,然后根据图纸将汽车造出来。
类:我们叫做class。 是型。
对象:我们叫做Object,instance(实例)。是体。
抽象:抽出类似的部分。
以后我们说某个类的对象,某个类的实例。是一样的意思。
1.对象是具体的事物;类是对对象的抽象;
2.类可以看成一类对象的模板,对象可以看成该类的一个具体实例。
3.类是用于描述同一类型的对象的一个抽象概念,类中定义了这一类对象所应具有的共同的属性、方法。
对于一个类来说,一般有三种常见的成员:属性field、方法method、构造器constructor。这三种成员都可以定义零个或多个。
属性用于定义该类或该类对象包含的数据或者说静态特征。属性作用范围是整个类体。
在定义成员变量时可以对其初始化,如果不对其初始化,Java使用默认的值对其初始化。
表4-2成员变量的默认值 |
|
数据类型 |
默认值 |
整型 |
0 |
浮点型 |
0.0 |
字符型 |
'\u0000' |
布尔型 |
false |
所有引用类型 |
null |
方法用于定义该类或该类实例的行为特征和功能实现。方法是类和对象行为特征的抽象。
方法很类似于面向过程中的函数。面向过程中,函数是最基本单位,整个程序由一个个函数调用组成。面向对象中,整个程序的基本单位是类,方法是从属于类和对象的。
方法定义格式:
1 2 3 |
|
构造器也叫构造方法(constructor),用于对象的初始化。构造器是一个创建对象时被自动调用的特殊方法,目的是对象的初始化。构造器的名称应与类的名称一致。Java通过new关键字来调用构造器,从而返回该类的实例,是一种特殊的方法。
声明格式:
1 2 3 |
|
要点:
1. 通过new关键字调用!!
2. 构造器虽然有返回值,但是不能定义返回值类型(返回值的类型肯定是本类),不能在构造器里使用return返回某个值。
3. 如果我们没有定义构造器,则编译器会自动定义一个无参的构造函数。如果已定义则编译器不会自动添加!
4. 构造器的方法名必须和类名一致
构造方法的重载
构造方法也是方法,只不过有特殊的作用而已。与普通方法一样,构造方法也可以重载。如果方法构造中形参名与属性名相同时,需要使用this关键字区分属性与形参,this表示创建好的对象。this.id 表示属性id;id表示形参id
public class Student {
//属性
int id;
String name;
int age;
//方法
void study() {
System.out.println("i am playing");
}
void play() {
System.out.println("i am playing");
}
//程序执行的入口,必须要有
public static void main(String[] args) {
Student stu=new Student();
stu.play();
}
}
public class Student {
//属性
int id;
String name;
int age;
Computer comp;//引入
//方法
void study() {
System.out.println("i am playing "+comp.brand);
}
void play() {
System.out.println("i am playing");
}
//构造方法
Student(){}
//程序执行的入口,必须要有
public static void main(String[] args) {
Student stu=new Student();//创建一个对象
stu.id=1001;
stu.name="syx";
stu.age=18;
Computer c=new Computer();
c.brand="ThinkPad";
stu.comp=c;
stu.study();
}
}
//一个Java文件只能有一个public修饰的类
class Computer{
String brand;
}
对应的UML图如下:
java虚拟机的内存可以分为三个区域:栈stack、堆heap、方法区method area。
栈的特点如下:
1. 栈描述的是方法执行的内存模型。每个方法被调用都会创建一个栈帧(存储局部变量、操作数、方法出口等)
2. JVM为每个线程创建一个栈,用于存放该线程执行方法的信息(实际参数、局部变量等)
3. 栈属于线程私有,不能实现线程间的共享!
4. 栈的存储特性是“先进后出,后进先出”,类似子弹夹。
5. 栈是由系统自动分配,速度快!栈是一个连续的内存空间!
堆的特点如下:
1. 堆用于存储创建好的对象和数组(数组也是对象)
2. JVM只有一个堆,被所有线程共享
3. 堆是一个不连续的内存空间,分配灵活,速度慢!
4.new 的时候就创建好了一个对象在堆里面。
方法区(又叫静态区)特点如下:
1. JVM只有一个方法区,被所有线程共享!
2. 方法区实际也是堆,只是用于存储类、常量相关的信息!
3. 用来存放程序中永远是不变或唯一的内容。(类信息【Class对象】、静态变量、字符串常量等)
c++中没有垃圾回收机制,需要关系内存有没有释放,JAVA不需要关心,可以更好的关心逻辑。
·内存管理
Java的内存管理很大程度指的就是对象的管理,其中包括对象空间的分配和释放。
对象空间的分配:使用new关键字创建对象即可
对象空间的释放:将对象赋值null即可。垃圾回收器将负责回收所有”不可达”对象的内存空间。
·垃圾回收过程
任何一种垃圾回收算法一般要做两件基本事情:
1. 发现无用的对象
2. 回收无用对象占用的内存空间。
垃圾回收机制保证可以将“无用的对象”进行回收。无用的对象指的就是没有任何变量引用该对象。Java的垃圾回收器通过相关算法发现无用对象,并进行清除和整理。
·垃圾回收相关算法
1. 引用计数法
堆中每个对象都有一个引用计数。被引用一次,计数加1. 被引用变量值变为null,则计数减1,直到计数为0,则表示变成无用对象。优点是算法简单,缺点是“循环引用的无用对象”无法别识别。
【示例4-7】循环引用示例
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
s1和s2互相引用对方,导致他们引用计数不为0,但是实际已经无用,但无法被识别。
2. 引用可达法(根搜索算法)
程序把所有的引用关系看作一张图,从一个节点GC ROOT开始,寻找对应的引用节点,找到这个节点以后,继续寻找这个节点的引用节点,当所有的引用节点寻找完毕之后,剩余的节点则被认为是没有被引用到的节点,即无用的节点。
分代垃圾回收机制,
是基于这样一个事实:不同的对象的生命周期是不一样的。因此,不同生命周期的对象可以采取不同的回收算法,以便提高回收效率。我们将对象分为三种状态:年轻代、年老代、持久代。JVM将堆内存划分为 Eden、Survivor 和 Tenured/Old 空间。
1. 年轻代
所有新生成的对象首先都是放在Eden区。 年轻代的目标就是尽可能快速的收集掉那些生命周期短的对象,对应的是Minor GC,每次 Minor GC 会清理年轻代的内存,算法采用效率较高的复制算法,频繁的操作,但是会浪费内存空间。当“年轻代”区域存放满对象后,就将对象存放到年老代区域。
2. 年老代
在年轻代中经历了N(默认15)次垃圾回收后仍然存活的对象,就会被放到年老代中。因此,可以认为年老代中存放的都是一些生命周期较长的对象。年老代对象越来越多,我们就需要启动Major GC和Full GC(全量回收),来一次大扫除,全面清理年轻代区域和年老代区域。
3. 持久代
用于存放静态文件,如Java类、方法等。持久代对垃圾回收没有显著影响。
图4-7 堆内存的划分细节
·Minor GC:
用于清理年轻代区域。Eden区满了就会触发一次Minor GC。清理无用对象,将有用对象复制到“Survivor1”、“Survivor2”区中(这两个区,大小空间也相同,同一时刻Survivor1和Survivor2只有一个在用,一个为空)
·Major GC:
用于清理老年代区域。
·Full GC:
用于清理年轻代、年老代区域。 成本较高,会对系统性能产生影响。
在对JVM调优的过程中,很大一部分工作就是对于Full GC的调节。尽量不要启动Full GC。有如下原因可能导致Full GC:
1.年老代(Tenured)被写满
2.持久代(Perm)被写满
3.System.gc()被显式调用(程序建议GC启动,只是请求,不是调用GC)
4.上一次GC之后Heap的各域分配策略动态变化
垃圾回收过程:
1、新创建的对象,绝大多数都会存储在Eden中,
2、当Eden满了(达到一定比例)不能创建新对象,则触发垃圾回收(GC),将无用对象清理掉,
然后剩余对象复制到某个Survivor中,如S1,同时清空Eden区
3、当Eden区再次满了,会将S1中的不能清空的对象存到另外一个Survivor中,如S2,
同时将Eden区中的不能清空的对象,也复制到S1中,保证Eden和S1,均被清空。
4、重复多次(默认15次)Survivor中没有被清理的对象,则会复制到老年代Old(Tenured)区中,
5、当Old区满了,则会触发一个一次完整地垃圾回收(FullGC),之前新生代的垃圾回收称为(minorGC)