3.2_MNIST数据集简单分类测试

背景:

MNIST 数据集

  • 包含四个部分Training set images, Training set labels, Test set images, Test set labels.
  • 训练集的图片是mnist.train.images, 训练集的标签是mnist.train.labels
  • 训练集由来自250人手写的数字构成,测试集也是同样比例的手写数字。
  • 每一张图包含28×28=784个像素点,训练集中含有60000张图,测试集中含有10000张图。
  • 每张图都有对应的标签,是one hot vectors,即10个数字中只有一位是1,其余为0,即,mnist.train.labels是一个[6000,10]的数字矩阵

目标:

使用简单的无隐藏层的网络,对MNIST数据集进行简单的分类,输入层神经元784个,输出层神经元10个。
激活函数用softmax(), 给不同对象分配概率。MNIST的每一张图片都表示一个数字,从0到9,希望最后训练的结果,得到给定图片代表每个数字的概率。

程序:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data#下载数据集

mnist = input_data.read_data_sets("C:/Users/WangT/Desktop/MNIST_data",one_hot=True)#导入数据

batch_size = 100#定义每一次批次处理的数据大小
n_batch = mnist.train.num_examples // batch_size
#计算分批处理次数,//是整除的除数,结果始终为整数,区别于/
#mnist.train.num_examples是训练集的数据大小,类似还有mnist.validation.num_examples, mnist.test.num_examples.

x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
#placeholder占位符,希望能输入任意数量的MNIST图像,每一张图像展平为784维的向量,用2维浮点数张量来表示这些图,这个张量的形状是【none,784】,此处None表示此张量的第一个维度可以是任意长度的。

W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
#模型的参数,可以用Variable表示,可以计算输入值,也可以在计算中被修改,此处用全为零的张量来初始化w和b
prediction = tf.nn.softmax(tf.matmul(x,W)+b)
#得到预测结果
loss = tf.reduce_mean(tf.square(y - prediction))
#损失函数,评估模型好坏,tf.square是平方,tf.reduce_mean是取平均值
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#tf使用梯度下降法,以0.2的学习速率,不断修改模型参数来最小化loss

init = tf.global_variables_initializer()
#添加一个操作来初始化变量
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction,1))
#tf.equal()比对两个数,相同返回true不同返回false,tf.argmax(y,1)返回y最大时对应的x
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
#tf.cast()将上述结果每一次转换成浮点型,累加并取平均值,得到准确率

with tf.Session() as sess:#定义对话
    sess.run(init)
    for epoch in range (21):#模型循环训练21次
        for batch in range(n_batch):#每次训练要循环n_batch批次
            batch_xs,batch_ys = mnist.train.next_batch(batch_size)#读取训练集的下一批数据
            sess.run(train_step, feed_dict={x:batch_xs,y:batch_ys})#运行模型训练
        
        acc = sess.run(accuracy, feed_dict={x:mnist.test.images, y:mnist.test.labels})#每训练一次输出一次准确率,利用的是测试集的数据
        print("Iter"+str(epoch)+",Testing Accuracy"+str(acc))

结果:
	Iter0,Testing Accuracy0.8308
	Iter1,Testing Accuracy0.8711
	Iter2,Testing Accuracy0.8814
	Iter3,Testing Accuracy0.8885
	Iter4,Testing Accuracy0.8943
	Iter5,Testing Accuracy0.8965
	Iter6,Testing Accuracy0.8994
	Iter7,Testing Accuracy0.9011
	Iter8,Testing Accuracy0.9036
	Iter9,Testing Accuracy0.9055
	Iter10,Testing Accuracy0.9064
	Iter11,Testing Accuracy0.9071
	Iter12,Testing Accuracy0.908
	Iter13,Testing Accuracy0.9086
	Iter14,Testing Accuracy0.9098
	Iter15,Testing Accuracy0.9106
	Iter16,Testing Accuracy0.9116
	Iter17,Testing Accuracy0.9129
	Iter18,Testing Accuracy0.9131
	Iter19,Testing Accuracy0.914
	Iter20,Testing Accuracy0.9138

新的学习:

  • tensorflow.examples.tutorials.mnist
  • input_data.read_data_sets()
  • mnist.train.num_examples
  • mnist.train.next_batch()
  • tf.placeholder()
  • tf.Variable()
  • tf.zeros()
  • tf.matmul()
  • tf.nn.softmax()
  • tf.square()
  • tf.reduce_mean()
  • tf.train.GradientDescentOptimizer().minimize()
  • tf.global_variables_initializer()
  • tf.equal()
  • tf.argmax()
  • tf.cast()

你可能感兴趣的:(Tensorflow)