预训练模型下载地址
几乎所有的常用预训练模型都在这里面
总结下各种模型的下载地址:
Resnet:
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
inception:
model_urls = {
# Inception v3 ported from TensorFlow
'inception_v3_google': 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth',
}
Densenet:
model_urls = {
'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
}
Alexnet:
model_urls = {
'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
}
vggnet:
model_urls = {
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
}
1.换移动网络,有些公司网、校园网对于pytorch网站有很大的限速。
.(有时不也可)先下载下来,放入文件夹中,方法如下两种(推荐第二种)
针对的预训练模型是通用的模型,也可以是自定义模型,大多是vgg16 , resnet50 , resnet101 , 等,从官网加载太慢
直接使用默认程序里的下载方式,往往比较慢;
通过修改源代码,使得模型加载已经下载好的参数,修改地方如下:
通过查找自己代码里所调用网络的类,使用pycharm自带的函数查找功能(ctrl+鼠标左键),查看此网络的加载方法,修改model.load_state_dict()函数。
例如:已经下载好的resnet50的参数文件:放在model_urls里面,这样就可以提前下载直接使用。
model_urls = { 'resnet50': '/home/huihua/NewDisk1/pretrain_parameter/resnet50-19c8e357.pth',}
由于torch在加载模型时候首先检查本地缓存是否已经存在模型,所以在本用户目录下,预先下载放入可快速加载模型。
cd .cache/torch/checkpointscd /home/team/.torch/models两种方式,常常是用第二种作为torch模型的缓存文件夹
进入文件夹把所需模型权重放入即可自动加载,相比第一种方法简单点。