三分钟看懂一致性哈希算法

转:https://blog.csdn.net/gerryke/article/details/53939212

受一篇“五分钟看懂”的启发,来个哗众取宠的标题

一致性哈希算法,作为分布式计算的数据分配参考,比传统的取模,划段都好很多。

在电信计费中,可以作为多台消息接口机和在线计费主机的分配算法,根据session_id来分配,这样当计费主机动态伸缩的时候,因为session_id缓存缺失而需要放通的会话,会明显减少。

 

传统的取模方式

 

例如10条数据,3个节点,如果按照取模的方式,那就是

node a: 0,3,6,9

node b: 1,4,7

node c: 2,5,8

 

当增加一个节点的时候,数据分布就变更为

node a:0,4,8

node b:1,5,9

node c: 2,6

node d: 3,7

 

总结:数据3,4,5,6,7,8,9在增加节点的时候,都需要做搬迁,成本太高

 

一致性哈希方式

最关键的区别就是,对节点和数据,都做一次哈希运算,然后比较节点和数据的哈希值,数据取和节点最相近的节点做为存放节点。这样就保证当节点增加或者减少的时候,影响的数据最少。

还是拿刚刚的例子,(用简单的字符串的ascii码做哈希key):

十条数据,算出各自的哈希值

0:192

1:196

2:200

3:204

4:208

5:212

6:216

7:220

8:224

9:228

 

有三个节点,算出各自的哈希值

node a: 203

node g: 209

node z: 228

 

这个时候比较两者的哈希值,如果大于228,就归到前面的203,相当于整个哈希值就是一个环,对应的映射结果:

node a: 0,1,2

node g: 3,4

node z: 5,6,7,8,9

 

这个时候加入node n, 就可以算出node n的哈希值:

node n: 216

 

这个时候对应的数据就会做迁移:

node a: 0,1,2

node g: 3,4

node n: 5,6

node z: 7,8,9

 

这个时候只有5和6需要做迁移

另外,这个时候如果只算出三个哈希值,那再跟数据的哈希值比较的时候,很容易分得不均衡,因此就引入了虚拟节点的概念,通过把三个节点加上ID后缀等方式,每个节点算出n个哈希值,均匀的放在哈希环上,这样对于数据算出的哈希值,能够比较散列的分布(详见下面代码中的replica)

 

通过这种算法做数据分布,在增减节点的时候,可以大大减少数据的迁移规模。

 

下面转载的哈希代码,已经将gen_key改成上述描述的用字符串ascii相加的方式,便于测试验证。

 

 

 
  1. import md5

  2. class HashRing(object):

  3. def __init__(self, nodes=None, replicas=3):

  4. """Manages a hash ring.

  5. `nodes` is a list of objects that have a proper __str__ representation.

  6. `replicas` indicates how many virtual points should be used pr. node,

  7. replicas are required to improve the distribution.

  8. """

  9. self.replicas = replicas

  10. self.ring = dict()

  11. self._sorted_keys = []

  12. if nodes:

  13. for node in nodes:

  14. self.add_node(node)

  15. def add_node(self, node):

  16. """Adds a `node` to the hash ring (including a number of replicas).

  17. """

  18. for i in xrange(0, self.replicas):

  19. key = self.gen_key('%s:%s' % (node, i))

  20. print "node %s-%s key is %ld" % (node, i, key)

  21. self.ring[key] = node

  22. self._sorted_keys.append(key)

  23. self._sorted_keys.sort()

  24. def remove_node(self, node):

  25. """Removes `node` from the hash ring and its replicas.

  26. """

  27. for i in xrange(0, self.replicas):

  28. key = self.gen_key('%s:%s' % (node, i))

  29. del self.ring[key]

  30. self._sorted_keys.remove(key)

  31. def get_node(self, string_key):

  32. """Given a string key a corresponding node in the hash ring is returned.

  33. If the hash ring is empty, `None` is returned.

  34. """

  35. return self.get_node_pos(string_key)[0]

  36. def get_node_pos(self, string_key):

  37. """Given a string key a corresponding node in the hash ring is returned

  38. along with it's position in the ring.

  39. If the hash ring is empty, (`None`, `None`) is returned.

  40. """

  41. if not self.ring:

  42. return None, None

  43. key = self.gen_key(string_key)

  44. nodes = self._sorted_keys

  45. for i in xrange(0, len(nodes)):

  46. node = nodes[i]

  47. if key <= node:

  48. print "string_key %s key %ld" % (string_key, key)

  49. print "get node %s-%d " % (self.ring[node], i)

  50. return self.ring[node], i

  51. return self.ring[nodes[0]], 0

  52. def print_ring(self):

  53. if not self.ring:

  54. return None, None

  55. nodes = self._sorted_keys

  56. for i in xrange(0, len(nodes)):

  57. node = nodes[i]

  58. print "ring slot %d is node %s, hash vale is %s" % (i, self.ring[node], node)

  59. def get_nodes(self, string_key):

  60. """Given a string key it returns the nodes as a generator that can hold the key.

  61. The generator is never ending and iterates through the ring

  62. starting at the correct position.

  63. """

  64. if not self.ring:

  65. yield None, None

  66. node, pos = self.get_node_pos(string_key)

  67. for key in self._sorted_keys[pos:]:

  68. yield self.ring[key]

  69. while True:

  70. for key in self._sorted_keys:

  71. yield self.ring[key]

  72. def gen_key(self, key):

  73. """Given a string key it returns a long value,

  74. this long value represents a place on the hash ring.

  75. md5 is currently used because it mixes well.

  76. """

  77. m = md5.new()

  78. m.update(key)

  79. return long(m.hexdigest(), 16)

  80. """

  81. hash = 0

  82. for i in xrange(0, len(key)):

  83. hash += ord(key[i])

  84. return hash

  85. """

  86.  
  87.  
  88. memcache_servers = ['a',

  89. 'g',

  90. 'z']

  91. ring = HashRing(memcache_servers,1)

  92. ring.print_ring()

  93. server = ring.get_node('0000')

  94. server = ring.get_node('1111')

  95. server = ring.get_node('2222')

  96. server = ring.get_node('3333')

  97. server = ring.get_node('4444')

  98. server = ring.get_node('5555')

  99. server = ring.get_node('6666')

  100. server = ring.get_node('7777')

  101. server = ring.get_node('8888')

  102. server = ring.get_node('9999')

  103.  
  104. print '----------------------------------------------------------'

  105.  
  106. memcache_servers = ['a',

  107. 'g',

  108. 'n',

  109. 'z']

  110. ring = HashRing(memcache_servers,1)

  111. ring.print_ring()

  112. server = ring.get_node('0000')

  113. server = ring.get_node('1111')

  114. server = ring.get_node('2222')

  115. server = ring.get_node('3333')

  116. server = ring.get_node('4444')

  117. server = ring.get_node('5555')

  118. server = ring.get_node('6666')

  119. server = ring.get_node('7777')

  120. server = ring.get_node('8888')

  121. server = ring.get_node('9999')

你可能感兴趣的:(架构)