目录
源码翻译
重要属性
重要方法
实操 demo
package java.nio;
import jdk.internal.HotSpotIntrinsicCandidate;
import jdk.internal.access.JavaNioAccess;
import jdk.internal.access.SharedSecrets;
import jdk.internal.misc.Unsafe;
import java.util.Spliterator;
/**
* 一个特定基础类型的数据容器。
* A container for data of a specific primitive type.
* 缓冲区是特定元素的线性有限序列。
* A buffer is a linear, finite sequence of elements of a specific
除了其内容之外,缓冲区的基本属性是其容量、限制和位置。
* primitive type. Aside from its content, the essential properties of a
* buffer are its capacity, limit, and position:
*
*
* 缓冲区的容量是它包含的元素数。这个缓冲区的容量永远不会是负数,也不会改变。
* A buffer's capacity is the number of elements it contains. The
* capacity of a buffer is never negative and never changes.
*
* 缓冲区的限制是第一个不应该读或写的元素的索引。缓冲区的限制从不为负,也从不大于其 capacity
* A buffer's limit is the index of the first element that should
* not be read or written. A buffer's limit is never negative and is never
* greater than its capacity.
*
* 缓冲区的位置是要读取或写入的下一个元素的索引。缓冲区的位置从不为负,也不大于其 limit
* A buffer's position is the index of the next element to be
* read or written. A buffer's position is never negative and is never
* greater than its limit.
*
*
* 对于每个非布尔基元类型,该类有一个子类。
* There is one subclass of this class for each non-boolean primitive type.
*
*
*
Transferring data
* 种类
* Each subclass of this class defines two categories of get and
* put operations:
*
*
* 相对操作从开始读取或写入一个或多个元素,从当前位置开始,然后按传输的元素数增加位置
* Relative operations read or write one or more elements starting
* at the current position and then increment the position by the number of
* 如果请求的传输超过了限制,
* elements transferred. If the requested transfer exceeds the limit then a
* get 会抛出 BufferUnderflowException
* relative get operation throws a {@link BufferUnderflowException}
* put 会抛出 BufferOverflowException
* and a relative put operation throws a {@link
* 无论哪种情况,都不会传输数据。
* BufferOverflowException}; in either case, no data is transferred.
*
* 绝对操作采用显式元素索引,不影响位置。
* Absolute operations take an explicit element index and do not
* affect the position. Absolute get and put operations throw
* an {@link IndexOutOfBoundsException} if the index argument exceeds the
* limit.
*
*
*
* 当然,数据也可以通过一个合适的通道的I/O操作传入或传出缓冲区,该通道始终与当前位置相关。
* Data may also, of course, be transferred in to or out of a buffer by the
* I/O operations of an appropriate channel, which are always relative to the
* current position.
*
* 标记和重置
*
Marking and resetting
* 缓冲区的标记是当调用 #reset 方法时,将重置其位置的索引。
* A buffer's mark is the index to which its position will be reset
* when the {@link #reset reset} method is invoked. The mark is not always
* 标记并不总是被定义的,但是当它被定义时,它从不为负数,也不大于位置。
* defined, but when it is defined it is never negative and is never greater
* 如果定义了标记,则当位置或限值调整为小于标记的值时,该标记将被丢弃。
* than the position. If the mark is defined then it is discarded when the
* position or the limit is adjusted to a value smaller than the mark. If the
* 如果未定义标记,则调用 #reset 方法会引发@linkInvalidMarkException。
* mark is not defined then invoking the {@link #reset reset} method causes an
* {@link InvalidMarkException} to be thrown.
*
* 不变量
*
Invariants
* 以下不变量用于标记、位置、限制和容量值
* The following invariant holds for the mark, position, limit, and
* capacity values:
*
*
* {@code 0} {@code <=}
* mark {@code <=}
* position {@code <=}
* limit {@code <=}
* capacity
*
*
* 新创建的缓冲区始终具有零的位置和未定义的标记。
* A newly-created buffer always has a position of zero and a mark that is
* 初始限制可以是零,也可以是其他一些值,这取决于缓冲区的类型和构造方式。
* undefined. The initial limit may be zero, or it may be some other value
* that depends upon the type of the buffer and the manner in which it is
* 新分配的缓冲区的每个元素都初始化为零。
* constructed. Each element of a newly-allocated buffer is initialized
* to zero.
*
* 附加操作
*
Additional operations
* 除了访问位置、限制和容量值以及标记和重置的方法外,此类还定义了对缓冲区的以下操作
* In addition to methods for accessing the position, limit, and capacity
* values and for marking and resetting, this class also defines the following
* operations upon buffers:
*
*
* 使缓冲区为新的通道读取或相对放置操作序列做好准备:
* {@link #clear} makes a buffer ready for a new sequence of
* channel-read or relative put operations: It sets the limit to the
* 它将设置 limit=capacity ,position=0 .
* capacity and the position to zero.
*
* 使缓冲区为新的通道写入或相对获取操作序列做好准备
* {@link #flip} makes a buffer ready for a new sequence of
* channel-write or relative get operations: It sets the limit to the
* 他将设置 limit=position ,position=0 .
* current position and then sets the position to zero.
*
* 使缓冲区准备好重新读取它已经包含的数据:
* {@link #rewind} makes a buffer ready for re-reading the data that
* 它保持 limit 不变,position=0 .
* it already contains: It leaves the limit unchanged and sets the position
* to zero.
*
* 创建缓冲区的子序列:limit 和 position 都不变 .
* {@link #slice} creates a subsequence of a buffer: It leaves the
* limit and the position unchanged.
*
* 创建缓冲区的浅副本:limit 和 position 都不变 .
* {@link #duplicate} creates a shallow copy of a buffer: It leaves
* the limit and the position unchanged.
*
*
*
* 只读缓冲区
* Read-only buffers
* 每个缓冲区都是可读的,但不是每个缓冲区都是可写的。
* Every buffer is readable, but not every buffer is writable. The
* 每个缓冲区类的突变方法被指定为可选操作,
* mutation methods of each buffer class are specified as optional
* 当对只读缓冲区调用时,这些操作将引发@LinkReadOnlyBufferException。
* operations that will throw a {@link ReadOnlyBufferException} when
* invoked upon a read-only buffer. A read-only buffer does not allow its
* 只读缓冲区不允许更改其内容,但其标记、位置和限制值是可变的
* content to be changed, but its mark, position, and limit values are mutable.
* 缓冲区是否为只读可以通过调用其 #isreadonly 方法来确定。
* Whether or not a buffer is read-only may be determined by invoking its
* {@link #isReadOnly isReadOnly} method.
*
* 线程安全
*
Thread safety
* 多个并发线程使用缓冲区是不安全的
* Buffers are not safe for use by multiple concurrent threads. If a
* 缓冲区将由多个线程使用,然后应通过适当的同步控制对缓冲区的访问。
* buffer is to be used by more than one thread then access to the buffer
* should be controlled by appropriate synchronization.
*
* 调用连接
*
Invocation chaining
* 此类中没有要返回的值的方法被指定为返回调用它们的缓冲区。
* Methods in this class that do not otherwise have a value to return are
* specified to return the buffer upon which they are invoked. This allows
* 这允许将方法调用链接起来;例如,语句序列
* method invocations to be chained; for example, the sequence of statements
*
*
* b.flip();
* b.position(23);
* b.limit(42);
*
* can be replaced by the single, more compact statement
*
*
* b.flip().position(23).limit(42);
*
*
* @author Mark Reinhold
* @author JSR-51 Expert Group
* @since 1.4
*/
public abstract class Buffer {
// 缓存的不安全访问对象
// Cached unsafe-access object
static final Unsafe UNSAFE = Unsafe.getUnsafe();
/**
* 在缓冲区中移动和拆分元素的拆分器的特性
* The characteristics of Spliterators that traverse and split elements
* maintained in Buffers.
*/
static final int SPLITERATOR_CHARACTERISTICS =
Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.ORDERED;
// Invariants: mark <= position <= limit <= capacity
private int mark = -1;
private int position = 0;
private int limit;
private int capacity;
// Used by heap byte buffers or direct buffers with Unsafe access
// For heap byte buffers this field will be the address relative to the
// array base address and offset into that array. The address might
// not align on a word boundary for slices, nor align at a long word
// (8 byte) boundary for byte[] allocations on 32-bit systems.
// For direct buffers it is the start address of the memory region. The
// address might not align on a word boundary for slices, nor when created
// using JNI, see NewDirectByteBuffer(void*, long).
// Should ideally be declared final
// NOTE: hoisted here for speed in JNI GetDirectBufferAddress
long address;
// Creates a new buffer with the given mark, position, limit, and capacity,
// after checking invariants.
//
Buffer(int mark, int pos, int lim, int cap) { // package-private
if (cap < 0)
throw createCapacityException(cap);
this.capacity = cap;
limit(lim);
position(pos);
if (mark >= 0) {
if (mark > pos)
throw new IllegalArgumentException("mark > position: ("
+ mark + " > " + pos + ")");
this.mark = mark;
}
}
/**
* Returns an {@code IllegalArgumentException} indicating that the source
* and target are the same {@code Buffer}. Intended for use in
* {@code put(src)} when the parameter is the {@code Buffer} on which the
* method is being invoked.
*
* @return IllegalArgumentException
* With a message indicating equal source and target buffers
*/
static IllegalArgumentException createSameBufferException() {
return new IllegalArgumentException("The source buffer is this buffer");
}
/**
* Verify that the capacity is nonnegative.
*
* @param capacity
* The new buffer's capacity, in $type$s
*
* @throws IllegalArgumentException
* If the {@code capacity} is a negative integer
*/
static IllegalArgumentException createCapacityException(int capacity) {
assert capacity < 0 : "capacity expected to be negative";
return new IllegalArgumentException("capacity < 0: ("
+ capacity + " < 0)");
}
/**
* Returns this buffer's capacity.
*
* @return The capacity of this buffer
*/
public final int capacity() {
return capacity;
}
/**
* Returns this buffer's position.
*
* @return The position of this buffer
*/
public final int position() {
return position;
}
/**
* Sets this buffer's position. If the mark is defined and larger than the
* new position then it is discarded.
*
* @param newPosition
* The new position value; must be non-negative
* and no larger than the current limit
*
* @return This buffer
*
* @throws IllegalArgumentException
* If the preconditions on {@code newPosition} do not hold
*/
public Buffer position(int newPosition) {
if (newPosition > limit | newPosition < 0)
throw createPositionException(newPosition);
position = newPosition;
if (mark > position) mark = -1;
return this;
}
/**
* Verify that {@code 0 < newPosition <= limit}
*
* @param newPosition
* The new position value
*
* @throws IllegalArgumentException
* If the specified position is out of bounds.
*/
private IllegalArgumentException createPositionException(int newPosition) {
String msg = null;
if (newPosition > limit) {
msg = "newPosition > limit: (" + newPosition + " > " + limit + ")";
} else { // assume negative
assert newPosition < 0 : "newPosition expected to be negative";
msg = "newPosition < 0: (" + newPosition + " < 0)";
}
return new IllegalArgumentException(msg);
}
/**
* Returns this buffer's limit.
*
* @return The limit of this buffer
*/
public final int limit() {
return limit;
}
/**
* Sets this buffer's limit. If the position is larger than the new limit
* then it is set to the new limit. If the mark is defined and larger than
* the new limit then it is discarded.
*
* @param newLimit
* The new limit value; must be non-negative
* and no larger than this buffer's capacity
*
* @return This buffer
*
* @throws IllegalArgumentException
* If the preconditions on {@code newLimit} do not hold
*/
public Buffer limit(int newLimit) {
if (newLimit > capacity | newLimit < 0)
throw createLimitException(newLimit);
limit = newLimit;
if (position > limit) position = limit;
if (mark > limit) mark = -1;
return this;
}
/**
* Verify that {@code 0 < newLimit <= capacity}
*
* @param newLimit
* The new limit value
*
* @throws IllegalArgumentException
* If the specified limit is out of bounds.
*/
private IllegalArgumentException createLimitException(int newLimit) {
String msg = null;
if (newLimit > capacity) {
msg = "newLimit > capacity: (" + newLimit + " > " + capacity + ")";
} else { // assume negative
assert newLimit < 0 : "newLimit expected to be negative";
msg = "newLimit < 0: (" + newLimit + " < 0)";
}
return new IllegalArgumentException(msg);
}
/**
* Sets this buffer's mark at its position.
*
* @return This buffer
*/
public Buffer mark() {
mark = position;
return this;
}
/**
* Resets this buffer's position to the previously-marked position.
*
* Invoking this method neither changes nor discards the mark's
* value.
*
* @return This buffer
*
* @throws InvalidMarkException
* If the mark has not been set
*/
public Buffer reset() {
int m = mark;
if (m < 0)
throw new InvalidMarkException();
position = m;
return this;
}
/**
* Clears this buffer. The position is set to zero, the limit is set to
* the capacity, and the mark is discarded.
*
* Invoke this method before using a sequence of channel-read or
* put operations to fill this buffer. For example:
*
*
* buf.clear(); // Prepare buffer for reading
* in.read(buf); // Read data
*
* This method does not actually erase the data in the buffer, but it
* is named as if it did because it will most often be used in situations
* in which that might as well be the case.
*
* @return This buffer
*/
public Buffer clear() {
position = 0;
limit = capacity;
mark = -1;
return this;
}
/**
* Flips this buffer. The limit is set to the current position and then
* the position is set to zero. If the mark is defined then it is
* discarded.
*
* After a sequence of channel-read or put operations, invoke
* this method to prepare for a sequence of channel-write or relative
* get operations. For example:
*
*
* buf.put(magic); // Prepend header
* in.read(buf); // Read data into rest of buffer
* buf.flip(); // Flip buffer
* out.write(buf); // Write header + data to channel
*
* This method is often used in conjunction with the {@link
* java.nio.ByteBuffer#compact compact} method when transferring data from
* one place to another.
*
* @return This buffer
*/
public Buffer flip() {
limit = position;
position = 0;
mark = -1;
return this;
}
/**
* Rewinds this buffer. The position is set to zero and the mark is
* discarded.
*
* Invoke this method before a sequence of channel-write or get
* operations, assuming that the limit has already been set
* appropriately. For example:
*
*
* out.write(buf); // Write remaining data
* buf.rewind(); // Rewind buffer
* buf.get(array); // Copy data into array
*
* @return This buffer
*/
public Buffer rewind() {
position = 0;
mark = -1;
return this;
}
/**
* Returns the number of elements between the current position and the
* limit.
*
* @return The number of elements remaining in this buffer
*/
public final int remaining() {
return limit - position;
}
/**
* Tells whether there are any elements between the current position and
* the limit.
*
* @return {@code true} if, and only if, there is at least one element
* remaining in this buffer
*/
public final boolean hasRemaining() {
return position < limit;
}
/**
* Tells whether or not this buffer is read-only.
*
* @return {@code true} if, and only if, this buffer is read-only
*/
public abstract boolean isReadOnly();
/**
* Tells whether or not this buffer is backed by an accessible
* array.
*
* If this method returns {@code true} then the {@link #array() array}
* and {@link #arrayOffset() arrayOffset} methods may safely be invoked.
*
*
* @return {@code true} if, and only if, this buffer
* is backed by an array and is not read-only
*
* @since 1.6
*/
public abstract boolean hasArray();
/**
* Returns the array that backs this
* buffer (optional operation).
*
* This method is intended to allow array-backed buffers to be
* passed to native code more efficiently. Concrete subclasses
* provide more strongly-typed return values for this method.
*
*
Modifications to this buffer's content will cause the returned
* array's content to be modified, and vice versa.
*
*
Invoke the {@link #hasArray hasArray} method before invoking this
* method in order to ensure that this buffer has an accessible backing
* array.
*
* @return The array that backs this buffer
*
* @throws ReadOnlyBufferException
* If this buffer is backed by an array but is read-only
*
* @throws UnsupportedOperationException
* If this buffer is not backed by an accessible array
*
* @since 1.6
*/
public abstract Object array();
/**
* Returns the offset within this buffer's backing array of the first
* element of the buffer (optional operation).
*
* If this buffer is backed by an array then buffer position p
* corresponds to array index p + {@code arrayOffset()}.
*
*
Invoke the {@link #hasArray hasArray} method before invoking this
* method in order to ensure that this buffer has an accessible backing
* array.
*
* @return The offset within this buffer's array
* of the first element of the buffer
*
* @throws ReadOnlyBufferException
* If this buffer is backed by an array but is read-only
*
* @throws UnsupportedOperationException
* If this buffer is not backed by an accessible array
*
* @since 1.6
*/
public abstract int arrayOffset();
/**
* Tells whether or not this buffer is
* direct.
*
* @return {@code true} if, and only if, this buffer is direct
*
* @since 1.6
*/
public abstract boolean isDirect();
/**
* Creates a new buffer whose content is a shared subsequence of
* this buffer's content.
*
* The content of the new buffer will start at this buffer's current
* position. Changes to this buffer's content will be visible in the new
* buffer, and vice versa; the two buffers' position, limit, and mark
* values will be independent.
*
*
The new buffer's position will be zero, its capacity and its limit
* will be the number of elements remaining in this buffer, its mark will be
* undefined. The new buffer will be direct if, and only if, this buffer is
* direct, and it will be read-only if, and only if, this buffer is
* read-only.
*
* @return The new buffer
*
* @since 9
*/
public abstract Buffer slice();
/**
* Creates a new buffer that shares this buffer's content.
*
* The content of the new buffer will be that of this buffer. Changes
* to this buffer's content will be visible in the new buffer, and vice
* versa; the two buffers' position, limit, and mark values will be
* independent.
*
*
The new buffer's capacity, limit, position and mark values will be
* identical to those of this buffer. The new buffer will be direct if, and
* only if, this buffer is direct, and it will be read-only if, and only if,
* this buffer is read-only.
*
* @return The new buffer
*
* @since 9
*/
public abstract Buffer duplicate();
// -- Package-private methods for bounds checking, etc. --
/**
*
* @return the base reference, paired with the address
* field, which in combination can be used for unsafe access into a heap
* buffer or direct byte buffer (and views of).
*/
abstract Object base();
/**
* Checks the current position against the limit, throwing a {@link
* BufferUnderflowException} if it is not smaller than the limit, and then
* increments the position.
*
* @return The current position value, before it is incremented
*/
final int nextGetIndex() { // package-private
if (position >= limit)
throw new BufferUnderflowException();
return position++;
}
final int nextGetIndex(int nb) { // package-private
if (limit - position < nb)
throw new BufferUnderflowException();
int p = position;
position += nb;
return p;
}
/**
* Checks the current position against the limit, throwing a {@link
* BufferOverflowException} if it is not smaller than the limit, and then
* increments the position.
*
* @return The current position value, before it is incremented
*/
final int nextPutIndex() { // package-private
if (position >= limit)
throw new BufferOverflowException();
return position++;
}
final int nextPutIndex(int nb) { // package-private
if (limit - position < nb)
throw new BufferOverflowException();
int p = position;
position += nb;
return p;
}
/**
* Checks the given index against the limit, throwing an {@link
* IndexOutOfBoundsException} if it is not smaller than the limit
* or is smaller than zero.
*/
@HotSpotIntrinsicCandidate
final int checkIndex(int i) { // package-private
if ((i < 0) || (i >= limit))
throw new IndexOutOfBoundsException();
return i;
}
final int checkIndex(int i, int nb) { // package-private
if ((i < 0) || (nb > limit - i))
throw new IndexOutOfBoundsException();
return i;
}
final int markValue() { // package-private
return mark;
}
final void discardMark() { // package-private
mark = -1;
}
static void checkBounds(int off, int len, int size) { // package-private
if ((off | len | (off + len) | (size - (off + len))) < 0)
throw new IndexOutOfBoundsException();
}
static {
// setup access to this package in SharedSecrets
SharedSecrets.setJavaNioAccess(
new JavaNioAccess() {
@Override
public JavaNioAccess.BufferPool getDirectBufferPool() {
return Bits.BUFFER_POOL;
}
});
}
}
容量:缓冲区包含的元素数。永远不会是负数,也不会改变。
限制:缓冲区的第一个不应该读或写的元素的索引。从不为负,也从不大于其 capacity。
位置:要读取或写入的下一个元素的索引。从不为负,也不大于其 limit。
标记
mark <= position <= limit <= capacity
将此缓冲区的标记设置在当前位置
/**
* Sets this buffer's mark at its position.
*/
public final Buffer mark() {
mark = position;
return this;
}
重置缓冲区的 position 到 mark 位置。配合 #mark 使用,如果没有 mark 值,则会抛出 InvalidMarkException 异常
public final Buffer reset() {
int m = mark;
if (m < 0)
throw new InvalidMarkException();
position = m;
return this;
}
为新的「通道读取或 put 」做好准备:它将设置 limit=capacity ,position=0 。
/**
* buf.clear(); // Prepare buffer for reading
* in.read(buf); // Read data
*/
public final Buffer clear() {
position = 0;
limit = capacity;
mark = -1;
return this;
}
在一系列「通道读取或 put」之后,调用此方法为「通道写入或 get」做准备。设置:limit=position ,position=0 。
/**
* For example:
*
* buf.put(magic); // Prepend header
* in.read(buf); // Read data into rest of buffer
* buf.flip(); // Flip buffer
* out.write(buf); // Write header + data to channel
*/
public final Buffer flip() {
limit = position;
position = 0;
mark = -1;
return this;
}
倒带缓冲区,准备好重新读取它已经包含的数据:它保持 limit 不变,position=0。
/**
* out.write(buf); // Write remaining data
* buf.rewind(); // Rewind buffer
* buf.get(array); // Copy data into array
*/
public final Buffer rewind() {
position = 0;
mark = -1;
return this;
}
返回此缓冲区中剩余的元素数,常在 while(buffer.remaining>0) 中使用。
/**
* Returns the number of elements between the current position and the
* limit.
*
* @return The number of elements remaining in this buffer
*/
public final int remaining() {
return limit - position;
}
判断缓冲区是否还有元素,确切的说是在 position 和 limit 之间是否还存在元素。
/**
* Tells whether there are any elements between the current position and
* the limit.
*
* @return true if, and only if, there is at least one element
* remaining in this buffer
*/
public final boolean hasRemaining() {
return position < limit;
}
创建缓冲区的子序列:limit 和 position 都不变 。
创建缓冲区的浅副本:limit 和 position 都不变。
package com.zqr.study.nio;
import java.io.FileInputStream;
import java.nio.Buffer;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
/**
* @Description:
* @Auther: zqr
* @Date: 2019-08-15 16:29
*/
public class BufferDemo {
public static void main(String args[]) throws Exception {
//这用用的是文件 IO 处理
FileInputStream fin = new FileInputStream("/Users/**/test.txt");
//创建文件的操作管道
FileChannel fc = fin.getChannel();
//分配一个 10 个大小缓冲区,就是分配一个 10 个大小的 byte 数组
ByteBuffer buffer = ByteBuffer.allocate(10);
output("初始化", buffer);
// 写入buffer
fc.read(buffer);
output("调用 read()", buffer);
// 写模式转为读模式
buffer.flip();
output("调用 flip()", buffer);
// 判断有没有可读数据
while (buffer.remaining() > 0) {
// 读取数据
byte b = buffer.get();
//System.out.println(((char)b));
}
output("调用 get()", buffer);
// 归位
buffer.clear();
output("调用 clear()", buffer);
// 最后把管道关闭
fin.close();
}
//把这个缓冲里面实时状态给答应出来
public static void output(String step, Buffer buffer) {
System.out.println(step + " : ");
//容量,数组大小
System.out.print("capacity: " + buffer.capacity() + ", ");
//当前操作数据所在的位置,也可以叫做游标
System.out.print("position: " + buffer.position() + ", ");
//锁定值,flip,数据操作范围索引只能在 position - limit 之间
System.out.println("limit: " + buffer.limit());
}
}
每个缓冲区都是可读的,但不是每个缓冲区都是可写的。 当对只读缓冲区进行操作时,会引发 LinkReadOnlyBufferException 异常。只读缓冲区不允许更改其内容,但其标记、位置和限制值是可变的。
#isreadonly 方法:确定是否是只读
#asReadOnlyBuffer 方法:把 buffer 转化为只读缓冲区
pass:改变原缓冲区内容,只读缓冲区也跟着改变
package com.zqr.study.nio;
import java.nio.ByteBuffer;
public class BufferDemo {
public static void main(String args[]) throws Exception {
ByteBuffer buffer = ByteBuffer.allocate(10);
// 缓冲区中的数据 0-9
for (int i = 0; i < buffer.capacity(); ++i) {
buffer.put((byte) i);
}
// 创建只读缓冲区
ByteBuffer readonly = buffer.asReadOnlyBuffer();
// 改变原缓冲区的内容
for (int i = 0; i < buffer.capacity(); ++i) {
byte b = buffer.get(i);
b *= 10;
buffer.put(i, b);
}
readonly.flip();
// 只读缓冲区的内容也随之改变
while (readonly.remaining() > 0) {
System.out.println(readonly.get());
}
}
}
· 优点
- Java虚拟机将尽最大努力在其上直接执行本地I/O操作。也就是说,在每次调用底层操作系统的一个本机I/O操作之前(或之后),它将尝试避免将缓冲区的内容复制到(或从)中间缓冲区。
- 直接缓冲区的内容可能位于正常垃圾收集堆之外,节省对应用程序内存占用。
· 缺点
比非直接缓冲区具有更高的分配和释放成本
· 使用 -> #allocateDirect
建议将直接缓冲区主要分配给受基础系统本机I/O操作影响的大型长期缓冲区。一般来说,只有当直接缓冲区在程序性能上产生可测量的收益时,才最好分配直接缓冲区。
- 直接在 JVM 堆上进行内存的分配, 本质上是 byte[] 数组的封装.
- 因为 Non-Direct Buffer 在 JVM 堆中, 因此当进行操作系统底层 IO 操作中时, 会将此 buffer 的内存复制到中间临时缓冲区中. 因此 Non-Direct Buffer 的效率就较低.
- #isdirect 判断是直接缓冲区还是非直接缓冲区
❤️
内存映射是一种读和写文件数据的方法,它可以比常规的基于流或者基于通道的 I/O 快的多。内存映射文件 I/O 是通过使文件中的 数据出现为 内存数组的内容来完成的,这其初听起来似乎不过就是将整个文件读到内存中,但是事实上并不是这样。一般来说, 只有文件中实际读取或者写入的部分才会映射到内存中。
创建 -> FileChannel.map -> demo
package com.zqr.study.nio;
import java.io.RandomAccessFile;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
public class BufferDemo {
public static void main(String args[]) throws Exception {
RandomAccessFile file = new RandomAccessFile("/Users/**/test.txt","rw");
FileChannel channel = file.getChannel();
//把缓冲区跟文件系统进行一个映射关联
MappedByteBuffer map = channel.map(FileChannel.MapMode.READ_WRITE, 0,1024);
//只要操作缓冲区里面的内容,文件内容也会跟着改变
map.put( 0, (byte)97 );
map.put( 10, (byte)122 );
channel.close();
file.close();
}
}