上节介绍了使用PID控制器控制车辆,PID控制器的优点是实现简单,处理速度快,但是缺点是不能处理有延迟的系统。本章介绍的MPC(modle predictive control)控制器能够很好的解决延迟的问题。
MPC控制器的和PID控制器一样,控制器输入包括车辆下一步的运行轨迹,车辆的当前状态,输出是航向角和加速度,用来控制方向盘,油门和刹车。不同之处在于,PID控制器是实时处理当前车辆与目标轨迹的差距来调整输出,使车辆接近目标轨迹,而MPC控制器将未来一个时间段 t t t分成 N N N个节点,预测每个节点的车辆状态,再调整控制器的输出使车辆尽可能接近参考轨迹。
MPC控制器的一般流程如下:
需要注意的是,调整航向角和加速度时,还要考虑乘车人的感受,所以要使加速度和航向角变化尽量平滑,下面详细介绍每一步的原理并给出代码实现。
拟合多项式很好理解,就是把公路路线拟合称为一个三阶多项式,返回函数每一项系数。
// Fit a polynomial.
// Adapted from
// https://github.com/JuliaMath/Polynomials.jl/blob/master/src/Polynomials.jl#L676-L716
Eigen::VectorXd polyfit(Eigen::VectorXd xvals, Eigen::VectorXd yvals,
int order) {
assert(xvals.size() == yvals.size());
assert(order >= 1 && order <= xvals.size() - 1);
Eigen::MatrixXd A(xvals.size(), order + 1);
for (int i = 0; i < xvals.size(); i++) {
A(i, 0) = 1.0;
}
for (int j = 0; j < xvals.size(); j++) {
for (int i = 0; i < order; i++) {
A(j, i + 1) = A(j, i) * xvals(j);
}
}
auto Q = A.householderQr();
auto result = Q.solve(yvals);
return result;
}
有了上一步的多项式系数,就可以规划出未来一段时间内车辆的坐标位置,注意,地图给出的路线使用的是全剧坐标系,但是控制车辆是应该以车辆为中心,所以要进行坐标转换。
// Evaluate a polynomial.
double polyeval(Eigen::VectorXd coeffs, double x) {
double result = 0.0;
for (int i = 0; i < coeffs.size(); i++) {
result += coeffs[i] * pow(x, i);
}
return result;
}
Eigen::VectorXd roadside_x(ptsx.size());
Eigen::VectorXd roadside_y(ptsx.size());
vector ptsx = j[1]["ptsx"];
vector ptsy = j[1]["ptsy"];
double px = j[1]["x"];
double py = j[1]["y"];
double psi = j[1]["psi"];
double v = j[1]["speed"];
double temp_x;
double temp_y;
// transform Descartes coordinates car space
for (size_t i = 0; i < ptsx.size(); i++) {
temp_x = ptsx[i] - px;
temp_y = ptsy[i] - py;
roadside_y[i] = (temp_y * cos(psi) - temp_x * sin(psi));
roadside_x[i] = (temp_y * sin(psi) + temp_x * cos(psi));
}
auto coeffs = polyfit(roadside_x, roadside_y, 3);
多项式可以计算未来若干时间节点车辆的目标位置,但是如何到达目标位置则是控制器的主要工作。
MPC控制器计算输出的过程可以看作一个工程最优化问题,即给出代价函数和约束条件,求解在约束条件下能使代价函数值最小的各个函数变量的最优值。
组成代价函数的变量包括位置的差异cte, 航向角的差异epsi, 速度差异,为了使乘车人感觉舒适,加速度和航向角速度也以及加速度行航向角速度的变化都不宜太高。
如下图所示,包括车辆的动态模型,代价函数和约束。动态模型用来预测接下来N个时间点车辆的状态,给出代价函数和约束条件,就可以将该模型转化为一个工程优化问题求解,最终目标是求解 ψ 和 a \psi和a ψ和a,即控制方向盘和油门或刹车,控制车辆按规划轨迹前进。
本章使用库函数cppad::ipopt::solve 求解工程最优化问题,其中f[0] 表示代价函数,f[1]~f[6N+1] 表示约束函数。
class FG_eval {
public:
// Fitted polynomial coefficients
Eigen::VectorXd coeffs;
FG_eval(Eigen::VectorXd coeffs) { this->coeffs = coeffs; }
typedef CPPAD_TESTVECTOR(AD) ADvector;
void operator()(ADvector& fg, const ADvector& vars) {
// TODO: implement MPC
// `fg` a vector of the cost constraints, `vars` is a vector of variable values (state & actuators)
// NOTE: You'll probably go back and forth between this function and
// the Solver function below.
fg[0] = 0;
// Cost function
// TODO: Define the cost related the reference state and
// any anything you think may be beneficial.
// The part of the cost based on the reference state.
for (int t = 0; t < N; t++) {
fg[0] += 10*CppAD::pow(vars[cte_start + t], 2);
fg[0] += 100*CppAD::pow(vars[epsi_start + t], 2);
fg[0] += CppAD::pow(vars[v_start + t] - ref_v, 2);
}
// Minimize the use of actuators.
for (int t = 0; t < N - 1; t++) {
fg[0] += CppAD::pow(vars[delta_start + t], 2);
fg[0] += CppAD::pow(vars[a_start + t], 2);
//fg[0] += 150*CppAD::pow(vars[delta_start + t] * vars[v_start+t],2);
}
// Minimize the value gap between sequential actuations.
for (int t = 0; t < N - 2; t++) {
fg[0] += 10000*CppAD::pow(vars[delta_start + t + 1] - vars[delta_start + t], 2);
fg[0] += CppAD::pow(vars[a_start + t + 1] - vars[a_start + t], 2);
}
fg[1 + px_start] = vars[px_start];
fg[1 + py_start] = vars[py_start];
fg[1 + psi_start] = vars[psi_start];
fg[1 + v_start] = vars[v_start];
fg[1 + cte_start] = vars[cte_start];
fg[1 + epsi_start] = vars[epsi_start];
for(int t = 1; t < N ; t++){
// psi, v, delta at time t
AD psi0 = vars[psi_start + t - 1];
AD v0 = vars[v_start + t - 1];
AD delta0 = vars[delta_start + t - 1];
// psi at time t+1
AD psi1 = vars[psi_start + t];
// how psi changes
fg[1 + psi_start + t] = psi1 - (psi0 - v0 * delta0 / Lf * dt);
}
for (int t = 1; t < N; t++) {
// The state at time t+1 .
AD x1 = vars[px_start + t];
AD y1 = vars[py_start + t];
AD psi1 = vars[psi_start + t];
AD v1 = vars[v_start + t];
AD cte1 = vars[cte_start + t];
AD epsi1 = vars[epsi_start + t];
// The state at time t.
AD x0 = vars[px_start + t - 1];
AD y0 = vars[py_start + t - 1];
AD psi0 = vars[psi_start + t - 1];
AD v0 = vars[v_start + t - 1];
AD cte0 = vars[cte_start + t - 1];
AD epsi0 = vars[epsi_start + t - 1];
// Only consider the actuation at time t.
AD delta0 = vars[delta_start + t - 1];
AD a0 = vars[a_start + t - 1];
if (t>1) {
a0 = vars[a_start + t - 2];
delta0 = vars[delta_start + t - 2];
}
AD f0 = coeffs[0] + coeffs[1] * x0 + coeffs[2]* CppAD::pow(x0,2)+coeffs[3] * CppAD::pow(x0,3);
AD psides0 = CppAD::atan(coeffs[1]+ 2 * coeffs[2] * x0 + 3 * coeffs [3] * CppAD::pow(x0,2));
// Here's `x` to get you started.
// The idea here is to constraint this value to be 0.
//
// Recall the equations for the model:
// x_[t] = x[t-1] + v[t-1] * cos(psi[t-1]) * dt
// y_[t] = y[t-1] + v[t-1] * sin(psi[t-1]) * dt
// psi_[t] = psi[t-1] + v[t-1] / Lf * delta[t-1] * dt
// v_[t] = v[t-1] + a[t-1] * dt
// cte[t] = f(x[t-1]) - y[t-1] + v[t-1] * sin(epsi[t-1]) * dt
// epsi[t] = psi[t] - psides[t-1] + v[t-1] * delta[t-1] / Lf * dt
fg[1 + px_start + t] = x1 - (x0 + v0 * CppAD::cos(psi0) * dt);
fg[1 + py_start + t] = y1 - (y0 + v0 * CppAD::sin(psi0) * dt);
fg[1 + psi_start + t] = psi1 - (psi0 - v0 * delta0 / Lf * dt);
fg[1 + v_start + t] = v1 - (v0 + a0 * dt);
fg[1 + cte_start + t] =
cte1 - ((f0 - y0) + (v0 * CppAD::sin(epsi0) * dt));
fg[1 + epsi_start + t] =
epsi1 - ((psi0 - psides0) + v0 * delta0 / Lf * dt);
}
}
};
CppAD::vector MPC::Solve(Eigen::VectorXd state, Eigen::VectorXd coeffs) {
bool ok = true;
size_t i;
typedef CPPAD_TESTVECTOR(double) Dvector;
// Set the number of model variables (includes both states and inputs).
// For example: If the state is a 4 element vector, the actuators is a 2
// element vector and there are 10 timesteps. The number of variables is:
//
// 4 * 10 + 2 * 9
size_t n_vars = 6 * N + (N - 1) * 2;
// Set the number of constraints
size_t n_constraints = 6 * N ;
// Initial value of the independent variables.
// SHOULD BE 0 besides initial state.
Dvector vars(n_vars);
for (i = 0; i < n_vars; i++) {
vars[i] = 0;
}
vars[px_start] = state[0];
vars[py_start] = state[1];
vars[psi_start] = state[2];
vars[v_start] = state[3];
vars[cte_start] = state[4];
vars[epsi_start] = state[5];
Dvector vars_lowerbound(n_vars);
Dvector vars_upperbound(n_vars);
// Set lower and upper limits for variables.
for (i = 0; i < delta_start; i++) {
vars_lowerbound[i] = -1.0e10;
vars_upperbound[i] = 1.0e10;
}
for (i = delta_start; i < a_start; i++) {
vars_lowerbound[i] = -0.436;
vars_upperbound[i] = 0.436;
}
for (i = a_start; i < n_vars; i++) {
vars_lowerbound[i] = -1.0;
vars_upperbound[i] = 1.0;
}
Dvector constraints_lowerbound(n_constraints);
Dvector constraints_upperbound(n_constraints);
for (i = 0; i < n_constraints; i++) {
constraints_lowerbound[i] = 0;
constraints_upperbound[i] = 0;
}
constraints_lowerbound[px_start] = state[0];
constraints_upperbound[px_start] = state[0];
constraints_lowerbound[py_start] = state[1];
constraints_upperbound[py_start] = state[1];
constraints_lowerbound[psi_start] = state[2];
constraints_upperbound[psi_start] = state[2];
constraints_lowerbound[v_start] = state[3];
constraints_upperbound[v_start] = state[3];
constraints_lowerbound[cte_start] = state[4];
constraints_upperbound[cte_start] = state[4];
constraints_lowerbound[epsi_start] = state[5];
constraints_upperbound[epsi_start] = state[5];
// Lower and upper limits for the constraints
// Should be 0 besides initial state.
// object that computes objective and constraints
FG_eval fg_eval(coeffs);
//
// NOTE: You don't have to worry about these options
//
// options for IPOPT solver
std::string options;
// Uncomment this if you'd like more print information
options += "Integer print_level 0\n";
// NOTE: Setting sparse to true allows the solver to take advantage
// of sparse routines, this makes the computation MUCH FASTER. If you
// can uncomment 1 of these and see if it makes a difference or not but
// if you uncomment both the computation time should go up in orders of
// magnitude.
options += "Sparse true forward\n";
options += "Sparse true reverse\n";
// NOTE: Currently the solver has a maximum time limit of 0.5 seconds.
// Change this as you see fit.
options += "Numeric max_cpu_time 0.5\n";
// place to return solution
CppAD::ipopt::solve_result solution;
#ifdef DEBUG
// solve the proble
std::cout<<"vars "<(
options, vars, vars_lowerbound, vars_upperbound, constraints_lowerbound,
constraints_upperbound, fg_eval, solution);
// Check some of the solution values
ok &= solution.status == CppAD::ipopt::solve_result::success;
// Cost
double cost = solution.obj_value;
std::cout << "Cost " << cost << std::endl;
return solution.x;
}
完整代码请戳这里