VINS简介与代码结构

VINS-Mono和VINS-Mobile是香港科技大学沈劭劼团队开源的单目视觉惯导SLAM方案。是基于优化和滑动窗口的VIO,使用IMU预积分构建紧耦合框架。并且具备自动初始化,在线外参标定,重定位,闭环检测,以及全局位姿图优化功能。

方案最大的贡献是构建了效果很好的融合算法,视觉闭环等模块倒是使用了较为常见的算法。

系列博客将结合课题组发表的paper,从代码层面,逐步剖析系统的各个模块,达到对单目VIO整体的把握,帮助自己理解各类算法,并开发出针对应用场景的视觉惯导SLAM系统。最终目标是使用在AR应用中(Android)。

系统pipeline

VINS简介与代码结构_第1张图片

 

主要分为五部分

1. 传感器数据处理:

  • 单目相机Monocular Camera: Feature detection and Tracking
  • IMU: Pre-integration

2. 初始化:

  • 仅使用视觉构建SfM
  • 将SfM结果和IMU预积分结果对齐

3. 基于滑动窗口的非线性优化:

4. 闭环检测:

5. 4自由度全局位姿图优化:

 

主要依赖的库只有OpenCV, Eigen和Ceres Solver,代码目录如下

 VINS简介与代码结构_第2张图片

核心算法都在feature_tracker和vins_estimator包中。

按照REDEME步骤跑EuRoC/MH_05_difficult.bag录好的数据结果如下:

VINS简介与代码结构_第3张图片

使用rqt_graph得到系统的node和topic关系:

rosbag将记录好的imu数据和单目相机获取的图像数据分别发布到/imu0和/cam0/image_raw话题;/feature_tracker节点通过订阅/cam0/image_raw话题获取图像数据,/vins_estimator节点通过订阅/imu0话题获取imu数据,同时/feature_tracker节点将提取出的图像特征发布到/feature_tracker/feature话题,由/vins_estimator订阅获取。

因此,/feature_tracker节点负责视觉提取和跟踪,/vins_estimator则是融合系统的主要部分。

为了方便看代码,整理了一下各个部分架构图(更新中):

processImage():

VINS简介与代码结构_第4张图片

系统入口是feature_tracker_node.cpp文件中的main函数

1. 首先创建feature_tracker节点,从配置文件中读取信息(parameters.cpp),包括:

  • ROS中发布订阅的话题名称;
  • 图像尺寸;
  • 特征跟踪参数;
  • 是否需要加上鱼眼mask来去除边缘噪点;
%YAML:1.0

#common parameters
imu_topic: "/imu0"
image_topic: "/cam0/image_raw"

#camera calibration 
model_type: PINHOLE
camera_name: camera
image_width: 752
image_height: 480
distortion_parameters:
   k1: -2.917e-01
   k2: 8.228e-02
   p1: 5.333e-05
   p2: -1.578e-04
projection_parameters:
   fx: 4.616e+02
   fy: 4.603e+02
   cx: 3.630e+02
   cy: 2.481e+02

# Extrinsic parameter between IMU and Camera.
estimate_extrinsic: 1   # 0  Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it.
                        # 1  Have an initial guess about extrinsic parameters. We will optimize around your initial guess.
                        # 2  Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning. 
ex_calib_result_path: "/config/euroc/ex_calib_result.yaml"  # If you choose 1 or 2, the extrinsic calibration result will be written vins_folder_path + ex_calib_result_path.                        
#If you choose 0 or 1, you should write down the following matrix.
#Rotation from camera frame to imu frame, imu^R_cam
extrinsicRotation: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [0, -1, 0, 
           1, 0, 0, 
           0, 0, 1]
#Translation from camera frame to imu frame, imu^T_cam
extrinsicTranslation: !!opencv-matrix
   rows: 3
   cols: 1
   dt: d
   data: [-0.02,-0.06, 0.01]

#feature traker paprameters
max_cnt: 150            # max feature number in feature tracking
min_dist: 30            # min distance between two features 
freq: 10                # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image 
F_threshold: 1.0        # ransac threshold (pixel)
show_track: 1           # publish tracking image as topic
equalize: 1             # if image is too dark or light, trun on equalize to find enough features
fisheye: 0              # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points

#optimization parameters
max_solver_time: 0.04  # max solver itration time (ms), to guarantee real time
max_num_iterations: 8   # max solver itrations, to guarantee real time
keyframe_parallax: 10.0 # keyframe selection threshold (pixel)

#imu parameters       The more accurate parameters you provide, the better performance
acc_n: 0.2          # accelerometer measurement noise standard deviation. #0.2
gyr_n: 0.02         # gyroscope measurement noise standard deviation.     #0.05
acc_w: 0.0002         # accelerometer bias random work noise standard deviation.  #0.02
gyr_w: 2.0e-5       # gyroscope bias random work noise standard deviation.     #4.0e-5
g_norm: 9.81007     # gravity magnitude


#loop closure parameters
loop_closure: 1   #if you want to use loop closure to minimize the drift, set loop_closure true and give your brief pattern file path and vocabulary file path accordingly;
                     #also give the camera calibration file same as feature_tracker node
pattern_file: "/support_files/brief_pattern.yml"
voc_file: "/support_files/brief_k10L6.bin"
min_loop_num: 25

该config.yaml文件中的其他参数在vins_estimator_node中被读取,属于融合算法的参数。

  • 优化参数(最大求解时间以保证实时性,不卡顿;最大迭代次数,避免冗余计算;视差阈值,用于选取sliding window中的关键帧);
  • imu参数,包括加速度计陀螺仪的测量噪声标准差、零偏随机游走噪声标准差,重力值(imu放火星上需要改变);
  • imu和camera之间的外参R,t;可选(0)已知精确的外参,运行中无需改变,(1)已知外参初值,运行中优化,(2)什么都不知道,在线初始化中标定
  • 闭环参数,包括brief描述子的pattern文件(前端视觉使用光流跟踪,不需要计算描述子),针对场景训练好的DBow二进制字典文件;

2. 监听IMAGE_TOPIC, 有图像信息发布到IMAGE_TOPIC上时,执行回调函数:

ros::Subscriber sub_img = n.subscribe(IMAGE_TOPIC, 100, img_callback);

 

 

3. img_callback()

前端视觉的算法基本在这个回调函数中,步骤为:

  1. 频率控制,保证每秒钟处理的image不多于FREQ;

  2. 对于单目:

    1). readImage;

    2). showUndistortion(可选);

    3). 将特征点矫正(相机模型camodocal)后归一化平面的3D点(此时没有尺度信息,3D点p.z=1),像素2D点,以及特征的id,封装成ros的sensor_msgs::PointCloud消息类型; 

  3. 将处理完的图像信息用PointCloud和Image的消息类型,发布到"feature"和"feature_img"的topic:

pub_img = n.advertise("feature", 1000);
pub_match = n.advertise("feature_img",1000);

 

4. 包含的视觉算法:

1. CLAHE(Contrast Limited Adaptive Histogram Equalization)

cv::Ptr clahe = cv::createCLAHE(3.0, cv::Size(8, 8));

2. Optical Flow(光流追踪)

cv::calcOpticalFlowPyrLK(cur_img, forw_img, cur_pts, forw_pts, status, err, cv::Size(21, 21), 3);

3. 根据匹配点计算Fundamental Matrix, 然后用Ransac剔除不符合Fundamental Matrix的外点

cv::findFundamentalMat(un_prev_pts, un_forw_pts, cv::FM_RANSAC, F_THRESHOLD, 0.99, status);

4. 特征点检测:goodFeaturesToTrack, 使用Shi-Tomasi的改进版Harris corner

cv::goodFeaturesToTrack(forw_img, n_pts, MAX_CNT - forw_pts.size(), 0.1, MIN_DIST, mask);

 特征点之间保证了最小距离30个像素,跟踪成功的特征点需要经过rotation-compensated旋转补偿的视差计算,视差在30个像素以上的特征点才会去参与三角化和后续的优化,保证了所有的特征点质量都是比较高的,同时降低了计算量。

 

 

你可能感兴趣的:(计算机视觉,位姿测量,视觉导航)