word2vec源码

makefile

CC = gcc
#Using -Ofast instead of -O3 might result in faster code, but is supported only by newer GCC versions
CFLAGS = -lm -pthread -O3 -march=native -Wall -funroll-loops -Wno-unused-result

all: word2vec word2phrase distance word-analogy compute-accuracy

word2vec : word2vec.c
	$(CC) word2vec.c -o word2vec $(CFLAGS)
word2phrase : word2phrase.c
	$(CC) word2phrase.c -o word2phrase $(CFLAGS)
distance : distance.c
	$(CC) distance.c -o distance $(CFLAGS)
word-analogy : word-analogy.c
	$(CC) word-analogy.c -o word-analogy $(CFLAGS)
compute-accuracy : compute-accuracy.c
	$(CC) compute-accuracy.c -o compute-accuracy $(CFLAGS)
	chmod +x *.sh

clean:
	rm -rf word2vec word2phrase distance word-analogy compute-accuracy

word2vec

//  Copyright 2013 Google Inc. All Rights Reserved.
//
//  Licensed under the Apache License, Version 2.0 (the "License");
//  you may not use this file except in compliance with the License.
//  You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
//  Unless required by applicable law or agreed to in writing, software
//  distributed under the License is distributed on an "AS IS" BASIS,
//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//  See the License for the specific language governing permissions and
//  limitations under the License.

#include 
#include 
#include 
#include 
#include 

#define MAX_STRING 100
#define EXP_TABLE_SIZE 1000
#define MAX_EXP 6
#define MAX_SENTENCE_LENGTH 1000
#define MAX_CODE_LENGTH 40

const int vocab_hash_size = 30000000;  // Maximum 30 * 0.7 = 21M words in the vocabulary

typedef float real;                    // Precision of float numbers

struct vocab_word {
  long long cn;
  int *point;
  char *word, *code, codelen;
};

char train_file[MAX_STRING], output_file[MAX_STRING];
char save_vocab_file[MAX_STRING], read_vocab_file[MAX_STRING];
struct vocab_word *vocab;
int binary = 0, cbow = 1, debug_mode = 2, window = 5, min_count = 5, num_threads = 12, min_reduce = 1;
int *vocab_hash;
long long vocab_max_size = 1000, vocab_size = 0, layer1_size = 100;
long long train_words = 0, word_count_actual = 0, iter = 5, file_size = 0, classes = 0;
real alpha = 0.025, starting_alpha, sample = 1e-3;
real *syn0, *syn1, *syn1neg, *expTable;
clock_t start;

int hs = 0, negative = 5;
const int table_size = 1e8;
int *table;

void InitUnigramTable() {
  int a, i;
  double train_words_pow = 0;
  double d1, power = 0.75;
  table = (int *)malloc(table_size * sizeof(int));
  for (a = 0; a < vocab_size; a++) train_words_pow += pow(vocab[a].cn, power);
  i = 0;
  d1 = pow(vocab[i].cn, power) / train_words_pow;
  for (a = 0; a < table_size; a++) {
    table[a] = i;
    if (a / (double)table_size > d1) {
      i++;
      d1 += pow(vocab[i].cn, power) / train_words_pow;
    }
    if (i >= vocab_size) i = vocab_size - 1;
  }
}

// Reads a single word from a file, assuming space + tab + EOL to be word boundaries
void ReadWord(char *word, FILE *fin, char *eof) {
  int a = 0, ch;
  while (1) {
    ch = fgetc_unlocked(fin);
    if (ch == EOF) {
      *eof = 1;
      break;
    }
    if (ch == 13) continue;
    if ((ch == ' ') || (ch == '\t') || (ch == '\n')) {
      if (a > 0) {
        if (ch == '\n') ungetc(ch, fin);
        break;
      }
      if (ch == '\n') {
        strcpy(word, (char *)"");
        return;
      } else continue;
    }
    word[a] = ch;
    a++;
    if (a >= MAX_STRING - 1) a--;   // Truncate too long words
  }
  word[a] = 0;
}

// Returns hash value of a word
int GetWordHash(char *word) {
  unsigned long long a, hash = 0;
  for (a = 0; a < strlen(word); a++) hash = hash * 257 + word[a];
  hash = hash % vocab_hash_size;
  return hash;
}

// Returns position of a word in the vocabulary; if the word is not found, returns -1
int SearchVocab(char *word) {
  unsigned int hash = GetWordHash(word);
  while (1) {
    if (vocab_hash[hash] == -1) return -1;
    if (!strcmp(word, vocab[vocab_hash[hash]].word)) return vocab_hash[hash];
    hash = (hash + 1) % vocab_hash_size;
  }
  return -1;
}

// Reads a word and returns its index in the vocabulary
int ReadWordIndex(FILE *fin, char *eof) {
  char word[MAX_STRING], eof_l = 0;
  ReadWord(word, fin, &eof_l);
  if (eof_l) {
    *eof = 1;
    return -1;
  }
  return SearchVocab(word);
}

// Adds a word to the vocabulary
int AddWordToVocab(char *word) {
  unsigned int hash, length = strlen(word) + 1;
  if (length > MAX_STRING) length = MAX_STRING;
  vocab[vocab_size].word = (char *)calloc(length, sizeof(char));
  strcpy(vocab[vocab_size].word, word);
  vocab[vocab_size].cn = 0;
  vocab_size++;
  // Reallocate memory if needed
  if (vocab_size + 2 >= vocab_max_size) {
    vocab_max_size += 1000;
    vocab = (struct vocab_word *)realloc(vocab, vocab_max_size * sizeof(struct vocab_word));
  }
  hash = GetWordHash(word);
  while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
  vocab_hash[hash] = vocab_size - 1;
  return vocab_size - 1;
}

// Used later for sorting by word counts
int VocabCompare(const void *a, const void *b) {
  long long l = ((struct vocab_word *)b)->cn - ((struct vocab_word *)a)->cn;
  if (l > 0) return 1;
  if (l < 0) return -1;
  return 0;
}

// Sorts the vocabulary by frequency using word counts
void SortVocab() {
  int a, size;
  unsigned int hash;
  // Sort the vocabulary and keep  at the first position
  qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare);
  for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
  size = vocab_size;
  train_words = 0;
  for (a = 0; a < size; a++) {
    // Words occuring less than min_count times will be discarded from the vocab
    if ((vocab[a].cn < min_count) && (a != 0)) {
      vocab_size--;
      free(vocab[a].word);
    } else {
      // Hash will be re-computed, as after the sorting it is not actual
      hash=GetWordHash(vocab[a].word);
      while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
      vocab_hash[hash] = a;
      train_words += vocab[a].cn;
    }
  }
  vocab = (struct vocab_word *)realloc(vocab, (vocab_size + 1) * sizeof(struct vocab_word));
  // Allocate memory for the binary tree construction
  for (a = 0; a < vocab_size; a++) {
    vocab[a].code = (char *)calloc(MAX_CODE_LENGTH, sizeof(char));
    vocab[a].point = (int *)calloc(MAX_CODE_LENGTH, sizeof(int));
  }
}

// Reduces the vocabulary by removing infrequent tokens
void ReduceVocab() {
  int a, b = 0;
  unsigned int hash;
  for (a = 0; a < vocab_size; a++) if (vocab[a].cn > min_reduce) {
    vocab[b].cn = vocab[a].cn;
    vocab[b].word = vocab[a].word;
    b++;
  } else free(vocab[a].word);
  vocab_size = b;
  for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
  for (a = 0; a < vocab_size; a++) {
    // Hash will be re-computed, as it is not actual
    hash = GetWordHash(vocab[a].word);
    while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
    vocab_hash[hash] = a;
  }
  fflush(stdout);
  min_reduce++;
}

// Create binary Huffman tree using the word counts
// Frequent words will have short uniqe binary codes
void CreateBinaryTree() {
  long long a, b, i, min1i, min2i, pos1, pos2, point[MAX_CODE_LENGTH];
  char code[MAX_CODE_LENGTH];
  long long *count = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long));
  long long *binary = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long));
  long long *parent_node = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long));
  for (a = 0; a < vocab_size; a++) count[a] = vocab[a].cn;
  for (a = vocab_size; a < vocab_size * 2; a++) count[a] = 1e15;
  pos1 = vocab_size - 1;
  pos2 = vocab_size;
  // Following algorithm constructs the Huffman tree by adding one node at a time
  for (a = 0; a < vocab_size - 1; a++) {
    // First, find two smallest nodes 'min1, min2'
    if (pos1 >= 0) {
      if (count[pos1] < count[pos2]) {
        min1i = pos1;
        pos1--;
      } else {
        min1i = pos2;
        pos2++;
      }
    } else {
      min1i = pos2;
      pos2++;
    }
    if (pos1 >= 0) {
      if (count[pos1] < count[pos2]) {
        min2i = pos1;
        pos1--;
      } else {
        min2i = pos2;
        pos2++;
      }
    } else {
      min2i = pos2;
      pos2++;
    }
    count[vocab_size + a] = count[min1i] + count[min2i];
    parent_node[min1i] = vocab_size + a;
    parent_node[min2i] = vocab_size + a;
    binary[min2i] = 1;
  }
  // Now assign binary code to each vocabulary word
  for (a = 0; a < vocab_size; a++) {
    b = a;
    i = 0;
    while (1) {
      code[i] = binary[b];
      point[i] = b;
      i++;
      b = parent_node[b];
      if (b == vocab_size * 2 - 2) break;
    }
    vocab[a].codelen = i;
    vocab[a].point[0] = vocab_size - 2;
    for (b = 0; b < i; b++) {
      vocab[a].code[i - b - 1] = code[b];
      vocab[a].point[i - b] = point[b] - vocab_size;
    }
  }
  free(count);
  free(binary);
  free(parent_node);
}

void LearnVocabFromTrainFile() {
  char word[MAX_STRING], eof = 0;
  FILE *fin;
  long long a, i, wc = 0;
  for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
  fin = fopen(train_file, "rb");
  if (fin == NULL) {
    printf("ERROR: training data file not found!\n");
    exit(1);
  }
  vocab_size = 0;
  AddWordToVocab((char *)"");
  while (1) {
    ReadWord(word, fin, &eof);
    if (eof) break;
    train_words++;
    wc++;
    if ((debug_mode > 1) && (wc >= 1000000)) {
      printf("%lldM%c", train_words / 1000000, 13);
      fflush(stdout);
      wc = 0;
    }
    i = SearchVocab(word);
    if (i == -1) {
      a = AddWordToVocab(word);
      vocab[a].cn = 1;
    } else vocab[i].cn++;
    if (vocab_size > vocab_hash_size * 0.7) ReduceVocab();
  }
  SortVocab();
  if (debug_mode > 0) {
    printf("Vocab size: %lld\n", vocab_size);
    printf("Words in train file: %lld\n", train_words);
  }
  file_size = ftell(fin);
  fclose(fin);
}

void SaveVocab() {
  long long i;
  FILE *fo = fopen(save_vocab_file, "wb");
  for (i = 0; i < vocab_size; i++) fprintf(fo, "%s %lld\n", vocab[i].word, vocab[i].cn);
  fclose(fo);
}

void ReadVocab() {
  long long a, i = 0;
  char c, eof = 0;
  char word[MAX_STRING];
  FILE *fin = fopen(read_vocab_file, "rb");
  if (fin == NULL) {
    printf("Vocabulary file not found\n");
    exit(1);
  }
  for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
  vocab_size = 0;
  while (1) {
    ReadWord(word, fin, &eof);
    if (eof) break;
    a = AddWordToVocab(word);
    fscanf(fin, "%lld%c", &vocab[a].cn, &c);
    i++;
  }
  SortVocab();
  if (debug_mode > 0) {
    printf("Vocab size: %lld\n", vocab_size);
    printf("Words in train file: %lld\n", train_words);
  }
  fin = fopen(train_file, "rb");
  if (fin == NULL) {
    printf("ERROR: training data file not found!\n");
    exit(1);
  }
  fseek(fin, 0, SEEK_END);
  file_size = ftell(fin);
  fclose(fin);
}

void InitNet() {
  long long a, b;
  unsigned long long next_random = 1;
  a = posix_memalign((void **)&syn0, 128, (long long)vocab_size * layer1_size * sizeof(real));
  if (syn0 == NULL) {printf("Memory allocation failed\n"); exit(1);}
  if (hs) {
    a = posix_memalign((void **)&syn1, 128, (long long)vocab_size * layer1_size * sizeof(real));
    if (syn1 == NULL) {printf("Memory allocation failed\n"); exit(1);}
    for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++)
     syn1[a * layer1_size + b] = 0;
  }
  if (negative>0) {
    a = posix_memalign((void **)&syn1neg, 128, (long long)vocab_size * layer1_size * sizeof(real));
    if (syn1neg == NULL) {printf("Memory allocation failed\n"); exit(1);}
    for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++)
     syn1neg[a * layer1_size + b] = 0;
  }
  for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++) {
    next_random = next_random * (unsigned long long)25214903917 + 11;
    syn0[a * layer1_size + b] = (((next_random & 0xFFFF) / (real)65536) - 0.5) / layer1_size;
  }
  CreateBinaryTree();
}

void *TrainModelThread(void *id) {
  long long a, b, d, cw, word, last_word, sentence_length = 0, sentence_position = 0;
  long long word_count = 0, last_word_count = 0, sen[MAX_SENTENCE_LENGTH + 1];
  long long l1, l2, c, target, label, local_iter = iter;
  unsigned long long next_random = (long long)id;
  char eof = 0;
  real f, g;
  clock_t now;
  real *neu1 = (real *)calloc(layer1_size, sizeof(real));
  real *neu1e = (real *)calloc(layer1_size, sizeof(real));
  FILE *fi = fopen(train_file, "rb");
  fseek(fi, file_size / (long long)num_threads * (long long)id, SEEK_SET);
  while (1) {
    if (word_count - last_word_count > 10000) {
      word_count_actual += word_count - last_word_count;
      last_word_count = word_count;
      if ((debug_mode > 1)) {
        now=clock();
        printf("%cAlpha: %f  Progress: %.2f%%  Words/thread/sec: %.2fk  ", 13, alpha,
         word_count_actual / (real)(iter * train_words + 1) * 100,
         word_count_actual / ((real)(now - start + 1) / (real)CLOCKS_PER_SEC * 1000));
        fflush(stdout);
      }
      alpha = starting_alpha * (1 - word_count_actual / (real)(iter * train_words + 1));
      if (alpha < starting_alpha * 0.0001) alpha = starting_alpha * 0.0001;
    }
    if (sentence_length == 0) {
      while (1) {
        word = ReadWordIndex(fi, &eof);
        if (eof) break;
        if (word == -1) continue;
        word_count++;
        if (word == 0) break;
        // The subsampling randomly discards frequent words while keeping the ranking same
        if (sample > 0) {
          real ran = (sqrt(vocab[word].cn / (sample * train_words)) + 1) * (sample * train_words) / vocab[word].cn;
          next_random = next_random * (unsigned long long)25214903917 + 11;
          if (ran < (next_random & 0xFFFF) / (real)65536) continue;
        }
        sen[sentence_length] = word;
        sentence_length++;
        if (sentence_length >= MAX_SENTENCE_LENGTH) break;
      }
      sentence_position = 0;
    }
    if (eof || (word_count > train_words / num_threads)) {
      word_count_actual += word_count - last_word_count;
      local_iter--;
      if (local_iter == 0) break;
      word_count = 0;
      last_word_count = 0;
      sentence_length = 0;
      fseek(fi, file_size / (long long)num_threads * (long long)id, SEEK_SET);
      continue;
    }
    word = sen[sentence_position];
    if (word == -1) continue;
    for (c = 0; c < layer1_size; c++) neu1[c] = 0;
    for (c = 0; c < layer1_size; c++) neu1e[c] = 0;
    next_random = next_random * (unsigned long long)25214903917 + 11;
    b = next_random % window;
    if (cbow) {  //train the cbow architecture
      // in -> hidden
      cw = 0;
      for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
        c = sentence_position - window + a;
        if (c < 0) continue;
        if (c >= sentence_length) continue;
        last_word = sen[c];
        if (last_word == -1) continue;
        for (c = 0; c < layer1_size; c++) neu1[c] += syn0[c + last_word * layer1_size];
        cw++;
      }
      if (cw) {
        for (c = 0; c < layer1_size; c++) neu1[c] /= cw;
        if (hs) for (d = 0; d < vocab[word].codelen; d++) {
          f = 0;
          l2 = vocab[word].point[d] * layer1_size;
          // Propagate hidden -> output
          for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1[c + l2];
          if (f <= -MAX_EXP) continue;
          else if (f >= MAX_EXP) continue;
          else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];
          // 'g' is the gradient multiplied by the learning rate
          g = (1 - vocab[word].code[d] - f) * alpha;
          // Propagate errors output -> hidden
          for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2];
          // Learn weights hidden -> output
          for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * neu1[c];
        }
        // NEGATIVE SAMPLING
        if (negative > 0) for (d = 0; d < negative + 1; d++) {
          if (d == 0) {
            target = word;
            label = 1;
          } else {
            next_random = next_random * (unsigned long long)25214903917 + 11;
            target = table[(next_random >> 16) % table_size];
            if (target == 0) target = next_random % (vocab_size - 1) + 1;
            if (target == word) continue;
            label = 0;
          }
          l2 = target * layer1_size;
          f = 0;
          for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1neg[c + l2];
          if (f > MAX_EXP) g = (label - 1) * alpha;
          else if (f < -MAX_EXP) g = (label - 0) * alpha;
          else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha;
          for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2];
          for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * neu1[c];
        }
        // hidden -> in
        for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
          c = sentence_position - window + a;
          if (c < 0) continue;
          if (c >= sentence_length) continue;
          last_word = sen[c];
          if (last_word == -1) continue;
          for (c = 0; c < layer1_size; c++) syn0[c + last_word * layer1_size] += neu1e[c];
        }
      }
    } else {  //train skip-gram
      for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
        c = sentence_position - window + a;
        if (c < 0) continue;
        if (c >= sentence_length) continue;
        last_word = sen[c];
        if (last_word == -1) continue;
        l1 = last_word * layer1_size;
        for (c = 0; c < layer1_size; c++) neu1e[c] = 0;
        // HIERARCHICAL SOFTMAX
        if (hs) for (d = 0; d < vocab[word].codelen; d++) {
          f = 0;
          l2 = vocab[word].point[d] * layer1_size;
          // Propagate hidden -> output
          for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1[c + l2];
          if (f <= -MAX_EXP) continue;
          else if (f >= MAX_EXP) continue;
          else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];
          // 'g' is the gradient multiplied by the learning rate
          g = (1 - vocab[word].code[d] - f) * alpha;
          // Propagate errors output -> hidden
          for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2];
          // Learn weights hidden -> output
          for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * syn0[c + l1];
        }
        // NEGATIVE SAMPLING
        if (negative > 0) for (d = 0; d < negative + 1; d++) {
          if (d == 0) {
            target = word;
            label = 1;
          } else {
            next_random = next_random * (unsigned long long)25214903917 + 11;
            target = table[(next_random >> 16) % table_size];
            if (target == 0) target = next_random % (vocab_size - 1) + 1;
            if (target == word) continue;
            label = 0;
          }
          l2 = target * layer1_size;
          f = 0;
          for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1neg[c + l2];
          if (f > MAX_EXP) g = (label - 1) * alpha;
          else if (f < -MAX_EXP) g = (label - 0) * alpha;
          else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha;
          for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2];
          for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * syn0[c + l1];
        }
        // Learn weights input -> hidden
        for (c = 0; c < layer1_size; c++) syn0[c + l1] += neu1e[c];
      }
    }
    sentence_position++;
    if (sentence_position >= sentence_length) {
      sentence_length = 0;
      continue;
    }
  }
  fclose(fi);
  free(neu1);
  free(neu1e);
  pthread_exit(NULL);
}

void TrainModel() {
  long a, b, c, d;
  FILE *fo;
  pthread_t *pt = (pthread_t *)malloc(num_threads * sizeof(pthread_t));
  printf("Starting training using file %s\n", train_file);
  starting_alpha = alpha;
  if (read_vocab_file[0] != 0) ReadVocab(); else LearnVocabFromTrainFile();
  if (save_vocab_file[0] != 0) SaveVocab();
  if (output_file[0] == 0) return;
  InitNet();
  if (negative > 0) InitUnigramTable();
  start = clock();
  for (a = 0; a < num_threads; a++) pthread_create(&pt[a], NULL, TrainModelThread, (void *)a);
  for (a = 0; a < num_threads; a++) pthread_join(pt[a], NULL);
  fo = fopen(output_file, "wb");
  if (classes == 0) {
    // Save the word vectors
    fprintf(fo, "%lld %lld\n", vocab_size, layer1_size);
    for (a = 0; a < vocab_size; a++) {
      fprintf(fo, "%s ", vocab[a].word);
      if (binary) for (b = 0; b < layer1_size; b++) fwrite(&syn0[a * layer1_size + b], sizeof(real), 1, fo);
      else for (b = 0; b < layer1_size; b++) fprintf(fo, "%lf ", syn0[a * layer1_size + b]);
      fprintf(fo, "\n");
    }
  } else {
    // Run K-means on the word vectors
    int clcn = classes, iter = 10, closeid;
    int *centcn = (int *)malloc(classes * sizeof(int));
    int *cl = (int *)calloc(vocab_size, sizeof(int));
    real closev, x;
    real *cent = (real *)calloc(classes * layer1_size, sizeof(real));
    for (a = 0; a < vocab_size; a++) cl[a] = a % clcn;
    for (a = 0; a < iter; a++) {
      for (b = 0; b < clcn * layer1_size; b++) cent[b] = 0;
      for (b = 0; b < clcn; b++) centcn[b] = 1;
      for (c = 0; c < vocab_size; c++) {
        for (d = 0; d < layer1_size; d++) cent[layer1_size * cl[c] + d] += syn0[c * layer1_size + d];
        centcn[cl[c]]++;
      }
      for (b = 0; b < clcn; b++) {
        closev = 0;
        for (c = 0; c < layer1_size; c++) {
          cent[layer1_size * b + c] /= centcn[b];
          closev += cent[layer1_size * b + c] * cent[layer1_size * b + c];
        }
        closev = sqrt(closev);
        for (c = 0; c < layer1_size; c++) cent[layer1_size * b + c] /= closev;
      }
      for (c = 0; c < vocab_size; c++) {
        closev = -10;
        closeid = 0;
        for (d = 0; d < clcn; d++) {
          x = 0;
          for (b = 0; b < layer1_size; b++) x += cent[layer1_size * d + b] * syn0[c * layer1_size + b];
          if (x > closev) {
            closev = x;
            closeid = d;
          }
        }
        cl[c] = closeid;
      }
    }
    // Save the K-means classes
    for (a = 0; a < vocab_size; a++) fprintf(fo, "%s %d\n", vocab[a].word, cl[a]);
    free(centcn);
    free(cent);
    free(cl);
  }
  fclose(fo);
}

int ArgPos(char *str, int argc, char **argv) {
  int a;
  for (a = 1; a < argc; a++) if (!strcmp(str, argv[a])) {
    if (a == argc - 1) {
      printf("Argument missing for %s\n", str);
      exit(1);
    }
    return a;
  }
  return -1;
}

int main(int argc, char **argv) {
  int i;
  if (argc == 1) {
    printf("WORD VECTOR estimation toolkit v 0.1c\n\n");
    printf("Options:\n");
    printf("Parameters for training:\n");
    printf("\t-train \n");
    printf("\t\tUse text data from  to train the model\n");
    printf("\t-output \n");
    printf("\t\tUse  to save the resulting word vectors / word clusters\n");
    printf("\t-size \n");
    printf("\t\tSet size of word vectors; default is 100\n");
    printf("\t-window \n");
    printf("\t\tSet max skip length between words; default is 5\n");
    printf("\t-sample \n");
    printf("\t\tSet threshold for occurrence of words. Those that appear with higher frequency in the training data\n");
    printf("\t\twill be randomly down-sampled; default is 1e-3, useful range is (0, 1e-5)\n");
    printf("\t-hs \n");
    printf("\t\tUse Hierarchical Softmax; default is 0 (not used)\n");
    printf("\t-negative \n");
    printf("\t\tNumber of negative examples; default is 5, common values are 3 - 10 (0 = not used)\n");
    printf("\t-threads \n");
    printf("\t\tUse  threads (default 12)\n");
    printf("\t-iter \n");
    printf("\t\tRun more training iterations (default 5)\n");
    printf("\t-min-count \n");
    printf("\t\tThis will discard words that appear less than  times; default is 5\n");
    printf("\t-alpha \n");
    printf("\t\tSet the starting learning rate; default is 0.025 for skip-gram and 0.05 for CBOW\n");
    printf("\t-classes \n");
    printf("\t\tOutput word classes rather than word vectors; default number of classes is 0 (vectors are written)\n");
    printf("\t-debug \n");
    printf("\t\tSet the debug mode (default = 2 = more info during training)\n");
    printf("\t-binary \n");
    printf("\t\tSave the resulting vectors in binary moded; default is 0 (off)\n");
    printf("\t-save-vocab \n");
    printf("\t\tThe vocabulary will be saved to \n");
    printf("\t-read-vocab \n");
    printf("\t\tThe vocabulary will be read from , not constructed from the training data\n");
    printf("\t-cbow \n");
    printf("\t\tUse the continuous bag of words model; default is 1 (use 0 for skip-gram model)\n");
    printf("\nExamples:\n");
    printf("./word2vec -train data.txt -output vec.txt -size 200 -window 5 -sample 1e-4 -negative 5 -hs 0 -binary 0 -cbow 1 -iter 3\n\n");
    return 0;
  }
  output_file[0] = 0;
  save_vocab_file[0] = 0;
  read_vocab_file[0] = 0;
  if ((i = ArgPos((char *)"-size", argc, argv)) > 0) layer1_size = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-train", argc, argv)) > 0) strcpy(train_file, argv[i + 1]);
  if ((i = ArgPos((char *)"-save-vocab", argc, argv)) > 0) strcpy(save_vocab_file, argv[i + 1]);
  if ((i = ArgPos((char *)"-read-vocab", argc, argv)) > 0) strcpy(read_vocab_file, argv[i + 1]);
  if ((i = ArgPos((char *)"-debug", argc, argv)) > 0) debug_mode = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-binary", argc, argv)) > 0) binary = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-cbow", argc, argv)) > 0) cbow = atoi(argv[i + 1]);
  if (cbow) alpha = 0.05;
  if ((i = ArgPos((char *)"-alpha", argc, argv)) > 0) alpha = atof(argv[i + 1]);
  if ((i = ArgPos((char *)"-output", argc, argv)) > 0) strcpy(output_file, argv[i + 1]);
  if ((i = ArgPos((char *)"-window", argc, argv)) > 0) window = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-sample", argc, argv)) > 0) sample = atof(argv[i + 1]);
  if ((i = ArgPos((char *)"-hs", argc, argv)) > 0) hs = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-negative", argc, argv)) > 0) negative = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-threads", argc, argv)) > 0) num_threads = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-iter", argc, argv)) > 0) iter = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-min-count", argc, argv)) > 0) min_count = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-classes", argc, argv)) > 0) classes = atoi(argv[i + 1]);
  vocab = (struct vocab_word *)calloc(vocab_max_size, sizeof(struct vocab_word));
  vocab_hash = (int *)calloc(vocab_hash_size, sizeof(int));
  expTable = (real *)malloc((EXP_TABLE_SIZE + 1) * sizeof(real));
  for (i = 0; i < EXP_TABLE_SIZE; i++) {
    expTable[i] = exp((i / (real)EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table
    expTable[i] = expTable[i] / (expTable[i] + 1);                   // Precompute f(x) = x / (x + 1)
  }
  TrainModel();
  return 0;
}

wordphrase.c

//  Copyright 2013 Google Inc. All Rights Reserved.
//
//  Licensed under the Apache License, Version 2.0 (the "License");
//  you may not use this file except in compliance with the License.
//  You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
//  Unless required by applicable law or agreed to in writing, software
//  distributed under the License is distributed on an "AS IS" BASIS,
//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//  See the License for the specific language governing permissions and
//  limitations under the License.

#include 
#include 
#include 
#include 
#include 

#define MAX_STRING 60

const int vocab_hash_size = 500000000; // Maximum 500M entries in the vocabulary

typedef float real;                    // Precision of float numbers

struct vocab_word {
  long long cn;
  char *word;
};

char train_file[MAX_STRING], output_file[MAX_STRING];
struct vocab_word *vocab;
int debug_mode = 2, min_count = 5, *vocab_hash, min_reduce = 1;
long long vocab_max_size = 10000, vocab_size = 0;
long long train_words = 0;
real threshold = 100;

unsigned long long next_random = 1;

// Reads a single word from a file, assuming space + tab + EOL to be word boundaries
void ReadWord(char *word, FILE *fin, char *eof) {
  int a = 0, ch;
  while (1) {
    ch = fgetc_unlocked(fin);
    if (ch == EOF) {
      *eof = 1;
      break;
    }
    if (ch == 13) continue;
    if ((ch == ' ') || (ch == '\t') || (ch == '\n')) {
      if (a > 0) {
        if (ch == '\n') ungetc(ch, fin);
        break;
      }
      if (ch == '\n') {
        //strcpy(word, (char *)"");
        word[0] = '\n';
        word[1] = 0;
        return;
      } else continue;
    }
    word[a] = ch;
    a++;
    if (a >= MAX_STRING - 1) a--;   // Truncate too long words
  }
  word[a] = 0;
}

// Returns hash value of a word
int GetWordHash(char *word) {
  unsigned long long a, hash = 1;
  for (a = 0; a < strlen(word); a++) hash = hash * 257 + word[a];
  hash = hash % vocab_hash_size;
  return hash;
}

// Returns position of a word in the vocabulary; if the word is not found, returns -1
int SearchVocab(char *word) {
  unsigned int hash = GetWordHash(word);
  while (1) {
    if (vocab_hash[hash] == -1) return -1;
    if (!strcmp(word, vocab[vocab_hash[hash]].word)) return vocab_hash[hash];
    hash = (hash + 1) % vocab_hash_size;
  }
  return -1;
}

// Reads a word and returns its index in the vocabulary
int ReadWordIndex(FILE *fin, char *eof) {
  char word[MAX_STRING], eof_l = 0;
  ReadWord(word, fin, &eof_l);
  if (eof_l) {
    *eof = 1;
    return -1;
  }
  return SearchVocab(word);
}

// Adds a word to the vocabulary
int AddWordToVocab(char *word) {
  unsigned int hash, length = strlen(word) + 1;
  if (length > MAX_STRING) length = MAX_STRING;
  vocab[vocab_size].word = (char *)calloc(length, sizeof(char));
  strcpy(vocab[vocab_size].word, word);
  vocab[vocab_size].cn = 0;
  vocab_size++;
  // Reallocate memory if needed
  if (vocab_size + 2 >= vocab_max_size) {
    vocab_max_size += 10000;
    vocab=(struct vocab_word *)realloc(vocab, vocab_max_size * sizeof(struct vocab_word));
  }
  hash = GetWordHash(word);
  while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
  vocab_hash[hash]=vocab_size - 1;
  return vocab_size - 1;
}

// Used later for sorting by word counts
int VocabCompare(const void *a, const void *b) {
    return ((struct vocab_word *)b)->cn - ((struct vocab_word *)a)->cn;
}

// Sorts the vocabulary by frequency using word counts
void SortVocab() {
  int a;
  unsigned int hash;
  // Sort the vocabulary and keep  at the first position
  qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare);
  for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
  for (a = 0; a < vocab_size; a++) {
    // Words occuring less than min_count times will be discarded from the vocab
    if (vocab[a].cn < min_count) {
      vocab_size--;
      free(vocab[vocab_size].word);
    } else {
      // Hash will be re-computed, as after the sorting it is not actual
      hash = GetWordHash(vocab[a].word);
      while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
      vocab_hash[hash] = a;
    }
  }
  vocab = (struct vocab_word *)realloc(vocab, vocab_size * sizeof(struct vocab_word));
}

// Reduces the vocabulary by removing infrequent tokens
void ReduceVocab() {
  int a, b = 0;
  unsigned int hash;
  for (a = 0; a < vocab_size; a++) if (vocab[a].cn > min_reduce) {
    vocab[b].cn = vocab[a].cn;
    vocab[b].word = vocab[a].word;
    b++;
  } else free(vocab[a].word);
  vocab_size = b;
  for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
  for (a = 0; a < vocab_size; a++) {
    // Hash will be re-computed, as it is not actual
    hash = GetWordHash(vocab[a].word);
    while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
    vocab_hash[hash] = a;
  }
  fflush(stdout);
  min_reduce++;
}

void LearnVocabFromTrainFile() {
  char word[MAX_STRING], last_word[MAX_STRING], bigram_word[MAX_STRING * 2], eof = 0;
  FILE *fin;
  long long a, b, i, start = 1;
  for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
  fin = fopen(train_file, "rb");
  if (fin == NULL) {
    printf("ERROR: training data file not found!\n");
    exit(1);
  }
  vocab_size = 0;
  AddWordToVocab((char *)"");
  while (1) {
    ReadWord(word, fin, &eof);
    if (eof) break;
    if (word[0] == '\n') {
      start = 1;
      continue;
    } else start = 0;
    train_words++;
    if ((debug_mode > 1) && (train_words % 1000000 == 0)) {
      printf("Words processed: %lldM     Vocab size: %lldK  %c", train_words / 1000000, vocab_size / 1000, 13);
      fflush(stdout);
    }
    i = SearchVocab(word);
    if (i == -1) {
      a = AddWordToVocab(word);
      vocab[a].cn = 1;
    } else vocab[i].cn++;
    if (start) continue;
    //sprintf(bigram_word, "%s_%s", last_word, word);
    a = 0;
    b = 0;
    while (last_word[a]) {
      bigram_word[b] = last_word[a];
      a++;
      b++;
    }
    bigram_word[b] = '_';
    b++;
    a = 0;
    while (word[a]) {
      bigram_word[b] = word[a];
      a++;
      b++;
    }
    bigram_word[b] = 0;
    bigram_word[MAX_STRING - 1] = 0;
    //
    strcpy(last_word, word);
    i = SearchVocab(bigram_word);
    if (i == -1) {
      a = AddWordToVocab(bigram_word);
      vocab[a].cn = 1;
    } else vocab[i].cn++;
    if (vocab_size > vocab_hash_size * 0.7) ReduceVocab();
  }
  SortVocab();
  if (debug_mode > 0) {
    printf("\nVocab size (unigrams + bigrams): %lld\n", vocab_size);
    printf("Words in train file: %lld\n", train_words);
  }
  fclose(fin);
}

void TrainModel() {
  long long a, b, pa = 0, pb = 0, pab = 0, oov, i, li = -1, cn = 0;
  char word[MAX_STRING], last_word[MAX_STRING], bigram_word[MAX_STRING * 2], eof = 0;
  real score;
  unsigned long long next_random = 1;
  FILE *fo, *fin;
  printf("Starting training using file %s\n", train_file);
  LearnVocabFromTrainFile();
  fin = fopen(train_file, "rb");
  fo = fopen(output_file, "wb");
  word[0] = 0;
  while (1) {
    strcpy(last_word, word);
    ReadWord(word, fin, &eof);
    if (eof) break;
    if (word[0] == '\n') {
      //fprintf(fo, "\n");
      fputc_unlocked('\n', fo);
      continue;
    }
    cn++;
    if ((debug_mode > 1) && (cn % 1000000 == 0)) {
      printf("Words written: %lldM%c", cn / 1000000, 13);
      fflush(stdout);
    }
    oov = 0;
    i = SearchVocab(word);
    if (i == -1) oov = 1; else pb = vocab[i].cn;
    if (li == -1) oov = 1;
    li = i;
    //sprintf(bigram_word, "%s_%s", last_word, word);
    a = 0;
    b = 0;
    while (last_word[a]) {
      bigram_word[b] = last_word[a];
      a++;
      b++;
    }
    bigram_word[b] = '_';
    b++;
    a = 0;
    while (word[a]) {
      bigram_word[b] = word[a];
      a++;
      b++;
    }
    bigram_word[b] = 0;
    bigram_word[MAX_STRING - 1] = 0;
    //
    i = SearchVocab(bigram_word);
    if (i == -1) oov = 1; else pab = vocab[i].cn;
    if (pa < min_count) oov = 1;
    if (pb < min_count) oov = 1;
    if (oov) score = 0; else score = (pab - min_count) / (real)pa / (real)pb * (real)train_words;
    next_random = next_random * (unsigned long long)25214903917 + 11;
    //if (next_random & 0x10000) score = 0;
    if (score > threshold) {
      fputc_unlocked('_', fo);
      pb = 0;
    } else fputc_unlocked(' ', fo);
    a = 0;
    while (word[a]) {
      fputc_unlocked(word[a], fo);
      a++;
    }
    pa = pb;
  }
  fclose(fo);
  fclose(fin);
}

int ArgPos(char *str, int argc, char **argv) {
  int a;
  for (a = 1; a < argc; a++) if (!strcmp(str, argv[a])) {
    if (a == argc - 1) {
      printf("Argument missing for %s\n", str);
      exit(1);
    }
    return a;
  }
  return -1;
}

int main(int argc, char **argv) {
  int i;
  if (argc == 1) {
    printf("WORD2PHRASE tool v0.1a\n\n");
    printf("Options:\n");
    printf("Parameters for training:\n");
    printf("\t-train \n");
    printf("\t\tUse text data from  to train the model\n");
    printf("\t-output \n");
    printf("\t\tUse  to save the resulting word vectors / word clusters / phrases\n");
    printf("\t-min-count \n");
    printf("\t\tThis will discard words that appear less than  times; default is 5\n");
    printf("\t-threshold \n");
    printf("\t\t The  value represents threshold for forming the phrases (higher means less phrases); default 100\n");
    printf("\t-debug \n");
    printf("\t\tSet the debug mode (default = 2 = more info during training)\n");
    printf("\nExamples:\n");
    printf("./word2phrase -train text.txt -output phrases.txt -threshold 100 -debug 2\n\n");
    return 0;
  }
  if ((i = ArgPos((char *)"-train", argc, argv)) > 0) strcpy(train_file, argv[i + 1]);
  if ((i = ArgPos((char *)"-debug", argc, argv)) > 0) debug_mode = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-output", argc, argv)) > 0) strcpy(output_file, argv[i + 1]);
  if ((i = ArgPos((char *)"-min-count", argc, argv)) > 0) min_count = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-threshold", argc, argv)) > 0) threshold = atof(argv[i + 1]);
  vocab = (struct vocab_word *)calloc(vocab_max_size, sizeof(struct vocab_word));
  vocab_hash = (int *)calloc(vocab_hash_size, sizeof(int));
  TrainModel();
  return 0;
}

distance.c

//  Copyright 2013 Google Inc. All Rights Reserved.
//
//  Licensed under the Apache License, Version 2.0 (the "License");
//  you may not use this file except in compliance with the License.
//  You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
//  Unless required by applicable law or agreed to in writing, software
//  distributed under the License is distributed on an "AS IS" BASIS,
//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//  See the License for the specific language governing permissions and
//  limitations under the License.

#include 
#include 
#include 
#include 

const long long max_size = 2000;         // max length of strings
const long long N = 40;                  // number of closest words that will be shown
const long long max_w = 50;              // max length of vocabulary entries

int main(int argc, char **argv) {
  FILE *f;
  char st1[max_size];
  char *bestw[N];
  char file_name[max_size], st[100][max_size];
  float dist, len, bestd[N], vec[max_size];
  long long words, size, a, b, c, d, cn, bi[100];
  float *M;
  char *vocab;
  if (argc < 2) {
    printf("Usage: ./distance \nwhere FILE contains word projections in the BINARY FORMAT\n");
    return 0;
  }
  strcpy(file_name, argv[1]);
  f = fopen(file_name, "rb");
  if (f == NULL) {
    printf("Input file not found\n");
    return -1;
  }
  fscanf(f, "%lld", &words);
  fscanf(f, "%lld", &size);
  vocab = (char *)malloc((long long)words * max_w * sizeof(char));
  for (a = 0; a < N; a++) bestw[a] = (char *)malloc(max_size * sizeof(char));
  M = (float *)malloc((long long)words * (long long)size * sizeof(float));
  if (M == NULL) {
    printf("Cannot allocate memory: %lld MB    %lld  %lld\n", (long long)words * size * sizeof(float) / 1048576, words, size);
    return -1;
  }
  for (b = 0; b < words; b++) {
    a = 0;
    while (1) {
      vocab[b * max_w + a] = fgetc(f);
      if (feof(f) || (vocab[b * max_w + a] == ' ')) break;
      if ((a < max_w) && (vocab[b * max_w + a] != '\n')) a++;
    }
    vocab[b * max_w + a] = 0;
    for (a = 0; a < size; a++) fread(&M[a + b * size], sizeof(float), 1, f);
    len = 0;
    for (a = 0; a < size; a++) len += M[a + b * size] * M[a + b * size];
    len = sqrt(len);
    for (a = 0; a < size; a++) M[a + b * size] /= len;
  }
  fclose(f);
  while (1) {
    for (a = 0; a < N; a++) bestd[a] = 0;
    for (a = 0; a < N; a++) bestw[a][0] = 0;
    printf("Enter word or sentence (EXIT to break): ");
    a = 0;
    while (1) {
      st1[a] = fgetc(stdin);
      if ((st1[a] == '\n') || (a >= max_size - 1)) {
        st1[a] = 0;
        break;
      }
      a++;
    }
    if (!strcmp(st1, "EXIT")) break;
    cn = 0;
    b = 0;
    c = 0;
    while (1) {
      st[cn][b] = st1[c];
      b++;
      c++;
      st[cn][b] = 0;
      if (st1[c] == 0) break;
      if (st1[c] == ' ') {
        cn++;
        b = 0;
        c++;
      }
    }
    cn++;
    for (a = 0; a < cn; a++) {
      for (b = 0; b < words; b++) if (!strcmp(&vocab[b * max_w], st[a])) break;
      if (b == words) b = -1;
      bi[a] = b;
      printf("\nWord: %s  Position in vocabulary: %lld\n", st[a], bi[a]);
      if (b == -1) {
        printf("Out of dictionary word!\n");
        break;
      }
    }
    if (b == -1) continue;
    printf("\n                                              Word       Cosine distance\n------------------------------------------------------------------------\n");
    for (a = 0; a < size; a++) vec[a] = 0;
    for (b = 0; b < cn; b++) {
      if (bi[b] == -1) continue;
      for (a = 0; a < size; a++) vec[a] += M[a + bi[b] * size];
    }
    len = 0;
    for (a = 0; a < size; a++) len += vec[a] * vec[a];
    len = sqrt(len);
    for (a = 0; a < size; a++) vec[a] /= len;
    for (a = 0; a < N; a++) bestd[a] = -1;
    for (a = 0; a < N; a++) bestw[a][0] = 0;
    for (c = 0; c < words; c++) {
      a = 0;
      for (b = 0; b < cn; b++) if (bi[b] == c) a = 1;
      if (a == 1) continue;
      dist = 0;
      for (a = 0; a < size; a++) dist += vec[a] * M[a + c * size];
      for (a = 0; a < N; a++) {
        if (dist > bestd[a]) {
          for (d = N - 1; d > a; d--) {
            bestd[d] = bestd[d - 1];
            strcpy(bestw[d], bestw[d - 1]);
          }
          bestd[a] = dist;
          strcpy(bestw[a], &vocab[c * max_w]);
          break;
        }
      }
    }
    for (a = 0; a < N; a++) printf("%50s\t\t%f\n", bestw[a], bestd[a]);
  }
  return 0;
}

word-analogy.c

//  Copyright 2013 Google Inc. All Rights Reserved.
//
//  Licensed under the Apache License, Version 2.0 (the "License");
//  you may not use this file except in compliance with the License.
//  You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
//  Unless required by applicable law or agreed to in writing, software
//  distributed under the License is distributed on an "AS IS" BASIS,
//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//  See the License for the specific language governing permissions and
//  limitations under the License.

#include 
#include 
#include 
#include 

const long long max_size = 2000;         // max length of strings
const long long N = 40;                  // number of closest words that will be shown
const long long max_w = 50;              // max length of vocabulary entries

int main(int argc, char **argv) {
  FILE *f;
  char st1[max_size];
  char bestw[N][max_size];
  char file_name[max_size], st[100][max_size];
  float dist, len, bestd[N], vec[max_size];
  long long words, size, a, b, c, d, cn, bi[100];
  float *M;
  char *vocab;
  if (argc < 2) {
    printf("Usage: ./word-analogy \nwhere FILE contains word projections in the BINARY FORMAT\n");
    return 0;
  }
  strcpy(file_name, argv[1]);
  f = fopen(file_name, "rb");
  if (f == NULL) {
    printf("Input file not found\n");
    return -1;
  }
  fscanf(f, "%lld", &words);
  fscanf(f, "%lld", &size);
  vocab = (char *)malloc((long long)words * max_w * sizeof(char));
  M = (float *)malloc((long long)words * (long long)size * sizeof(float));
  if (M == NULL) {
    printf("Cannot allocate memory: %lld MB    %lld  %lld\n", (long long)words * size * sizeof(float) / 1048576, words, size);
    return -1;
  }
  for (b = 0; b < words; b++) {
    a = 0;
    while (1) {
      vocab[b * max_w + a] = fgetc(f);
      if (feof(f) || (vocab[b * max_w + a] == ' ')) break;
      if ((a < max_w) && (vocab[b * max_w + a] != '\n')) a++;
    }
    vocab[b * max_w + a] = 0;
    for (a = 0; a < size; a++) fread(&M[a + b * size], sizeof(float), 1, f);
    len = 0;
    for (a = 0; a < size; a++) len += M[a + b * size] * M[a + b * size];
    len = sqrt(len);
    for (a = 0; a < size; a++) M[a + b * size] /= len;
  }
  fclose(f);
  while (1) {
    for (a = 0; a < N; a++) bestd[a] = 0;
    for (a = 0; a < N; a++) bestw[a][0] = 0;
    printf("Enter three words (EXIT to break): ");
    a = 0;
    while (1) {
      st1[a] = fgetc(stdin);
      if ((st1[a] == '\n') || (a >= max_size - 1)) {
        st1[a] = 0;
        break;
      }
      a++;
    }
    if (!strcmp(st1, "EXIT")) break;
    cn = 0;
    b = 0;
    c = 0;
    while (1) {
      st[cn][b] = st1[c];
      b++;
      c++;
      st[cn][b] = 0;
      if (st1[c] == 0) break;
      if (st1[c] == ' ') {
        cn++;
        b = 0;
        c++;
      }
    }
    cn++;
    if (cn < 3) {
      printf("Only %lld words were entered.. three words are needed at the input to perform the calculation\n", cn);
      continue;
    }
    for (a = 0; a < cn; a++) {
      for (b = 0; b < words; b++) if (!strcmp(&vocab[b * max_w], st[a])) break;
      if (b == words) b = 0;
      bi[a] = b;
      printf("\nWord: %s  Position in vocabulary: %lld\n", st[a], bi[a]);
      if (b == 0) {
        printf("Out of dictionary word!\n");
        break;
      }
    }
    if (b == 0) continue;
    printf("\n                                              Word              Distance\n------------------------------------------------------------------------\n");
    for (a = 0; a < size; a++) vec[a] = M[a + bi[1] * size] - M[a + bi[0] * size] + M[a + bi[2] * size];
    len = 0;
    for (a = 0; a < size; a++) len += vec[a] * vec[a];
    len = sqrt(len);
    for (a = 0; a < size; a++) vec[a] /= len;
    for (a = 0; a < N; a++) bestd[a] = 0;
    for (a = 0; a < N; a++) bestw[a][0] = 0;
    for (c = 0; c < words; c++) {
      if (c == bi[0]) continue;
      if (c == bi[1]) continue;
      if (c == bi[2]) continue;
      a = 0;
      for (b = 0; b < cn; b++) if (bi[b] == c) a = 1;
      if (a == 1) continue;
      dist = 0;
      for (a = 0; a < size; a++) dist += vec[a] * M[a + c * size];
      for (a = 0; a < N; a++) {
        if (dist > bestd[a]) {
          for (d = N - 1; d > a; d--) {
            bestd[d] = bestd[d - 1];
            strcpy(bestw[d], bestw[d - 1]);
          }
          bestd[a] = dist;
          strcpy(bestw[a], &vocab[c * max_w]);
          break;
        }
      }
    }
    for (a = 0; a < N; a++) printf("%50s\t\t%f\n", bestw[a], bestd[a]);
  }
  return 0;
}

compute-accuracy.c

//  Copyright 2013 Google Inc. All Rights Reserved.
//
//  Licensed under the Apache License, Version 2.0 (the "License");
//  you may not use this file except in compliance with the License.
//  You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
//  Unless required by applicable law or agreed to in writing, software
//  distributed under the License is distributed on an "AS IS" BASIS,
//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//  See the License for the specific language governing permissions and
//  limitations under the License.

#include 
#include 
#include 
#include 
#include 
#include 

const long long max_size = 2000;         // max length of strings
const long long N = 1;                   // number of closest words
const long long max_w = 50;              // max length of vocabulary entries

int main(int argc, char **argv)
{
  FILE *f;
  char st1[max_size], st2[max_size], st3[max_size], st4[max_size], bestw[N][max_size], file_name[max_size];
  float dist, len, bestd[N], vec[max_size];
  long long words, size, a, b, c, d, b1, b2, b3, threshold = 0;
  float *M;
  char *vocab;
  int TCN, CCN = 0, TACN = 0, CACN = 0, SECN = 0, SYCN = 0, SEAC = 0, SYAC = 0, QID = 0, TQ = 0, TQS = 0;
  if (argc < 2) {
    printf("Usage: ./compute-accuracy  \nwhere FILE contains word projections, and threshold is used to reduce vocabulary of the model for fast approximate evaluation (0 = off, otherwise typical value is 30000)\n");
    return 0;
  }
  strcpy(file_name, argv[1]);
  if (argc > 2) threshold = atoi(argv[2]);
  f = fopen(file_name, "rb");
  if (f == NULL) {
    printf("Input file not found\n");
    return -1;
  }
  fscanf(f, "%lld", &words);
  if (threshold) if (words > threshold) words = threshold;
  fscanf(f, "%lld", &size);
  vocab = (char *)malloc(words * max_w * sizeof(char));
  M = (float *)malloc(words * size * sizeof(float));
  if (M == NULL) {
    printf("Cannot allocate memory: %lld MB\n", words * size * sizeof(float) / 1048576);
    return -1;
  }
  for (b = 0; b < words; b++) {
    a = 0;
    while (1) {
      vocab[b * max_w + a] = fgetc(f);
      if (feof(f) || (vocab[b * max_w + a] == ' ')) break;
      if ((a < max_w) && (vocab[b * max_w + a] != '\n')) a++;
    }
    vocab[b * max_w + a] = 0;
    for (a = 0; a < max_w; a++) vocab[b * max_w + a] = toupper(vocab[b * max_w + a]);
    for (a = 0; a < size; a++) fread(&M[a + b * size], sizeof(float), 1, f);
    len = 0;
    for (a = 0; a < size; a++) len += M[a + b * size] * M[a + b * size];
    len = sqrt(len);
    for (a = 0; a < size; a++) M[a + b * size] /= len;
  }
  fclose(f);
  TCN = 0;
  while (1) {
    for (a = 0; a < N; a++) bestd[a] = 0;
    for (a = 0; a < N; a++) bestw[a][0] = 0;
    scanf("%s", st1);
    for (a = 0; a < strlen(st1); a++) st1[a] = toupper(st1[a]);
    if ((!strcmp(st1, ":")) || (!strcmp(st1, "EXIT")) || feof(stdin)) {
      if (TCN == 0) TCN = 1;
      if (QID != 0) {
        printf("ACCURACY TOP1: %.2f %%  (%d / %d)\n", CCN / (float)TCN * 100, CCN, TCN);
        printf("Total accuracy: %.2f %%   Semantic accuracy: %.2f %%   Syntactic accuracy: %.2f %% \n", CACN / (float)TACN * 100, SEAC / (float)SECN * 100, SYAC / (float)SYCN * 100);
      }
      QID++;
      scanf("%s", st1);
      if (feof(stdin)) break;
      printf("%s:\n", st1);
      TCN = 0;
      CCN = 0;
      continue;
    }
    if (!strcmp(st1, "EXIT")) break;
    scanf("%s", st2);
    for (a = 0; a < strlen(st2); a++) st2[a] = toupper(st2[a]);
    scanf("%s", st3);
    for (a = 0; a<strlen(st3); a++) st3[a] = toupper(st3[a]);
    scanf("%s", st4);
    for (a = 0; a < strlen(st4); a++) st4[a] = toupper(st4[a]);
    for (b = 0; b < words; b++) if (!strcmp(&vocab[b * max_w], st1)) break;
    b1 = b;
    for (b = 0; b < words; b++) if (!strcmp(&vocab[b * max_w], st2)) break;
    b2 = b;
    for (b = 0; b < words; b++) if (!strcmp(&vocab[b * max_w], st3)) break;
    b3 = b;
    for (a = 0; a < N; a++) bestd[a] = 0;
    for (a = 0; a < N; a++) bestw[a][0] = 0;
    TQ++;
    if (b1 == words) continue;
    if (b2 == words) continue;
    if (b3 == words) continue;
    for (b = 0; b < words; b++) if (!strcmp(&vocab[b * max_w], st4)) break;
    if (b == words) continue;
    for (a = 0; a < size; a++) vec[a] = (M[a + b2 * size] - M[a + b1 * size]) + M[a + b3 * size];
    TQS++;
    for (c = 0; c < words; c++) {
      if (c == b1) continue;
      if (c == b2) continue;
      if (c == b3) continue;
      dist = 0;
      for (a = 0; a < size; a++) dist += vec[a] * M[a + c * size];
      for (a = 0; a < N; a++) {
        if (dist > bestd[a]) {
          for (d = N - 1; d > a; d--) {
            bestd[d] = bestd[d - 1];
            strcpy(bestw[d], bestw[d - 1]);
          }
          bestd[a] = dist;
          strcpy(bestw[a], &vocab[c * max_w]);
          break;
        }
      }
    }
    if (!strcmp(st4, bestw[0])) {
      CCN++;
      CACN++;
      if (QID <= 5) SEAC++; else SYAC++;
    }
    if (QID <= 5) SECN++; else SYCN++;
    TCN++;
    TACN++;
  }
  printf("Questions seen / total: %d %d   %.2f %% \n", TQS, TQ, TQS/(float)TQ*100);
  return 0;
}

demo-analogy.sh

make
if [ ! -e text8 ]; then
  wget http://mattmahoney.net/dc/text8.zip -O text8.gz
  gzip -d text8.gz -f
fi
echo ---------------------------------------------------------------------------------------------------
echo Note that for the word analogy to perform well, the model should be trained on much larger data set
echo Example input: paris france berlin
echo ---------------------------------------------------------------------------------------------------
time ./word2vec -train text8 -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15
./word-analogy vectors.bin

demo-classes.sh

make
if [ ! -e text8 ]; then
  wget http://mattmahoney.net/dc/text8.zip -O text8.gz
  gzip -d text8.gz -f
fi
time ./word2vec -train text8 -output classes.txt -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -iter 15 -classes 500
sort classes.txt -k 2 -n > classes.sorted.txt
echo The word classes were saved to file classes.sorted.txt

demo-phrase-accuracy.sh

make
if [ ! -e news.2012.en.shuffled ]; then
  wget http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2012.en.shuffled.gz
  gzip -d news.2012.en.shuffled.gz -f
fi
sed -e "s/’/'/g" -e "s/′/'/g" -e "s/''/ /g" < news.2012.en.shuffled | tr -c "A-Za-z'_ \n" " " > news.2012.en.shuffled-norm0
time ./word2phrase -train news.2012.en.shuffled-norm0 -output news.2012.en.shuffled-norm0-phrase0 -threshold 200 -debug 2
time ./word2phrase -train news.2012.en.shuffled-norm0-phrase0 -output news.2012.en.shuffled-norm0-phrase1 -threshold 100 -debug 2
tr A-Z a-z < news.2012.en.shuffled-norm0-phrase1 > news.2012.en.shuffled-norm1-phrase1
time ./word2vec -train news.2012.en.shuffled-norm1-phrase1 -output vectors-phrase.bin -cbow 1 -size 200 -window 10 -negative 25 -hs 0 -sample 1e-5 -threads 20 -binary 1 -iter 15
./compute-accuracy vectors-phrase.bin < questions-phrases.txt

demo-phrase.sh

make
if [ ! -e news.2012.en.shuffled ]; then
  wget http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2012.en.shuffled.gz
  gzip -d news.2012.en.shuffled.gz -f
fi
sed -e "s/’/'/g" -e "s/′/'/g" -e "s/''/ /g" < news.2012.en.shuffled | tr -c "A-Za-z'_ \n" " " > news.2012.en.shuffled-norm0
time ./word2phrase -train news.2012.en.shuffled-norm0 -output news.2012.en.shuffled-norm0-phrase0 -threshold 200 -debug 2
time ./word2phrase -train news.2012.en.shuffled-norm0-phrase0 -output news.2012.en.shuffled-norm0-phrase1 -threshold 100 -debug 2
tr A-Z a-z < news.2012.en.shuffled-norm0-phrase1 > news.2012.en.shuffled-norm1-phrase1
time ./word2vec -train news.2012.en.shuffled-norm1-phrase1 -output vectors-phrase.bin -cbow 1 -size 200 -window 10 -negative 25 -hs 0 -sample 1e-5 -threads 20 -binary 1 -iter 15
./distance vectors-phrase.bin

demo-train-big-model-v1.sh

###############################################################################################
#
# Script for training good word and phrase vector model using public corpora, version 1.0.
# The training time will be from several hours to about a day.
#
# Downloads about 8 billion words, makes phrases using two runs of word2phrase, trains
# a 500-dimensional vector model and evaluates it on word and phrase analogy tasks.
#
###############################################################################################

# This function will convert text to lowercase and remove special characters
normalize_text() {
  awk '{print tolower($0);}' | sed -e "s/’/'/g" -e "s/′/'/g" -e "s/''/ /g" -e "s/'/ ' /g" -e "s/“/\"/g" -e "s/”/\"/g" \
  -e 's/"/ " /g' -e 's/\./ \. /g' -e 's/
/ /g'
-e 's/, / , /g' -e 's/(/ ( /g' -e 's/)/ ) /g' -e 's/\!/ \! /g' \ -e 's/\?/ \? /g' -e 's/\;/ /g' -e 's/\:/ /g' -e 's/-/ - /g' -e 's/=/ /g' -e 's/=/ /g' -e 's/*/ /g' -e 's/|/ /g' \ -e 's/«/ /g' | tr 0-9 " " } mkdir word2vec cd word2vec wget http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2012.en.shuffled.gz wget http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.en.shuffled.gz gzip -d news.2012.en.shuffled.gz gzip -d news.2013.en.shuffled.gz normalize_text < news.2012.en.shuffled > data.txt normalize_text < news.2013.en.shuffled >> data.txt wget http://www.statmt.org/lm-benchmark/1-billion-word-language-modeling-benchmark-r13output.tar.gz tar -xvf 1-billion-word-language-modeling-benchmark-r13output.tar.gz for i in `ls 1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled`; do normalize_text < 1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled/$i >> data.txt done wget http://ebiquity.umbc.edu/redirect/to/resource/id/351/UMBC-webbase-corpus tar -zxvf umbc_webbase_corpus.tar.gz webbase_all/*.txt for i in `ls webbase_all`; do normalize_text < webbase_all/$i >> data.txt done wget http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2 bzip2 -c -d enwiki-latest-pages-articles.xml.bz2 | awk '{print tolower($0);}' | perl -e ' # Program to filter Wikipedia XML dumps to "clean" text consisting only of lowercase # letters (a-z, converted from A-Z), and spaces (never consecutive)... # All other characters are converted to spaces. Only text which normally appears. # in the web browser is displayed. Tables are removed. Image captions are. # preserved. Links are converted to normal text. Digits are spelled out. # *** Modified to not spell digits or throw away non-ASCII characters *** # Written by Matt Mahoney, June 10, 2006. This program is released to the public domain. $/=">"; # input record separator while (<>) { if (/ ... if (/#redirect/i) {$text=0;} # remove #REDIRECT if ($text) { # Remove any text not normally visible if (/<\/text>/) {$text=0;} s/<.*>//; # remove xml tags s/&/&/g; # decode URL encoded chars s/<//g; s///g; # remove references ... s/<[^>]*>//g; # remove xhtml tags s/\[http:[^] ]*/[/g; # remove normal url, preserve visible text s/\|thumb//ig; # remove images links, preserve caption s/\|left//ig; s/\|right//ig; s/\|\d+px//ig; s/\[\[image:[^\[\]]*\|//ig; s/\[\[category:([^|\]]*)[^]]*\]\]/[[$1]]/ig; # show categories without markup s/\[\[[a-z\-]*:[^\]]*\]\]//g; # remove links to other languages s/\[\[[^\|\]]*\|/[[/g; # remove wiki url, preserve visible text s/{{[^}]*}}//g; # remove {{icons}} and {tables} s/{[^}]*}//g; s/\[//g; # remove [ and ] s/\]//g; s/&[^;]*;/ /g; # remove URL encoded chars $_=" $_ "; chop; print $_; } } ' | normalize_text | awk '{if (NF>1) print;}' >> data.txt wget http://word2vec.googlecode.com/svn/trunk/word2vec.c wget http://word2vec.googlecode.com/svn/trunk/word2phrase.c wget http://word2vec.googlecode.com/svn/trunk/compute-accuracy.c wget http://word2vec.googlecode.com/svn/trunk/questions-words.txt wget http://word2vec.googlecode.com/svn/trunk/questions-phrases.txt gcc word2vec.c -o word2vec -lm -pthread -O3 -march=native -funroll-loops gcc word2phrase.c -o word2phrase -lm -pthread -O3 -march=native -funroll-loops gcc compute-accuracy.c -o compute-accuracy -lm -pthread -O3 -march=native -funroll-loops ./word2phrase -train data.txt -output data-phrase.txt -threshold 200 -debug 2 ./word2phrase -train data-phrase.txt -output data-phrase2.txt -threshold 100 -debug 2 ./word2vec -train data-phrase2.txt -output vectors.bin -cbow 1 -size 500 -window 10 -negative 10 -hs 0 -sample 1e-5 -threads 40 -binary 1 -iter 3 -min-count 10 ./compute-accuracy vectors.bin 400000 < questions-words.txt # should get to almost 78% accuracy on 99.7% of questions ./compute-accuracy vectors.bin 1000000 < questions-phrases.txt # about 78% accuracy with 77% coverage

demo-word.sh

make
if [ ! -e text8 ]; then
  wget http://mattmahoney.net/dc/text8.zip -O text8.gz
  gzip -d text8.gz -f
fi
time ./word2vec -train text8 -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15
./distance vectors.bin

demo-word-accuracy.sh

make
if [ ! -e text8 ]; then
  wget http://mattmahoney.net/dc/text8.zip -O text8.gz
  gzip -d text8.gz -f
fi
time ./word2vec -train text8 -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15
./compute-accuracy vectors.bin 30000 < questions-words.txt
# to compute accuracy with the full vocabulary, use: ./compute-accuracy vectors.bin < questions-words.txt

在windows(C++ DEV)上运行不报错的一个版本。

#include 
#include 
#include 
#include 
#include 
#include  

#define MAX_STRING 10
#define EXP_TABLE_SIZE 1000
#define MAX_EXP 6
#define MAX_SENTENCE_LENGTH 1000
#define MAX_CODE_LENGTH 40

#define posix_memalign(p, a, s) (((*(p)) = _aligned_malloc((s), (a))), *(p) ?0 :errno)


const int vocab_hash_size = 15;  // Maximum 30 * 0.7 = 21M words in the vocabulary

typedef float real;                    // Precision of float numbers

struct vocab_word {
  long long cn;
  int *point;
  char *word, *code, codelen;
};

char train_file[MAX_STRING], output_file[MAX_STRING];
char save_vocab_file[MAX_STRING], read_vocab_file[MAX_STRING];
struct vocab_word *vocab;
int binary = 0, cbow = 1, debug_mode = 2, window = 5, min_count = 1, num_threads = 12, min_reduce = 1;
int *vocab_hash;
long long vocab_max_size = 1000, vocab_size = 0, layer1_size = 20;
long long train_words = 0, word_count_actual = 0, iter = 5, file_size = 0, classes = 0;
real alpha = 0.025, starting_alpha, sample = 1e-3;
real *syn0, *syn1, *syn1neg, *expTable;

clock_t start;	//计数器 

int hs = 0, negative = 5;
const int table_size = 20;
int *table;

// Create binary Huffman tree using the word counts
// Frequent words will have short uniqe binary codes
void CreateBinaryTree() {
  long long a, b, i, min1i, min2i, pos1, pos2, point[MAX_CODE_LENGTH];
  char code[MAX_CODE_LENGTH];
  long long *count = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long));
  
  
  long long *binary = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long));
  long long *parent_node = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long));
  for (a = 0; a < vocab_size; a++) count[a] = vocab[a].cn;
  for (a = vocab_size; a < vocab_size * 2; a++) count[a] = 1e15;
  pos1 = vocab_size - 1;
  pos2 = vocab_size;
  printf("ghehe1\n");
  // Following algorithm constructs the Huffman tree by adding one node at a time
  for (a = 0; a < vocab_size - 1; a++) {
    // First, find two smallest nodes 'min1, min2'
    if (pos1 >= 0) {
      if (count[pos1] < count[pos2]) {
        min1i = pos1;
        pos1--;
      } else {
        min1i = pos2;
        pos2++;
      }
    } else {
      min1i = pos2;
      pos2++;
    }
    if (pos1 >= 0) {
      if (count[pos1] < count[pos2]) {
        min2i = pos1;
        pos1--;
      } else {
        min2i = pos2;
        pos2++;
      }
    } else {
      min2i = pos2;
      pos2++;
    }
    count[vocab_size + a] = count[min1i] + count[min2i];
    parent_node[min1i] = vocab_size + a;
    parent_node[min2i] = vocab_size + a;
    binary[min2i] = 1;
  }
  printf("ghehe2\n");
  // Now assign binary code to each vocabulary word
  for (a = 0; a < vocab_size; a++) {
    b = a;
    i = 0;
    while (1) {
      code[i] = binary[b];
      point[i] = b;
      i++;
      b = parent_node[b];
      if (b == vocab_size * 2 - 2) break;
      printf("ghehe~~\n");
    }
    printf("ghehe~~11\n");
    vocab[a].codelen = i;
    printf("ghehe~~112\n");
    //vocab[a].point[0] = 1 ;
    //vocab[a].point[0] = vocab_size - 2;
    printf("ghehe~~113\n");
    for (b = 0; b < i; b++) {
      printf("ghehe~||~\n");
      vocab[a].code[i - b - 1] = code[b];
      vocab[a].point[i - b] = point[b] - vocab_size;
      printf( "%d:\n",vocab[b].point[0] ) ;
	  printf( "%d:\n",vocab[b].point[1] ) ;
    }
  }
  printf("ghehe3\n");

  //print( vocab[0].point[1] ) ;
  free(count);
  free(binary);
  free(parent_node);
}

void testHafManTree(){	//并测试预计算 sigmoid 
	vocab_size = 4; 
	vocab = (struct vocab_word *)calloc(vocab_size, sizeof(struct vocab_word));
	vocab[0].cn = 4;
	vocab[1].cn = 3;
	vocab[2].cn = 2;
	vocab[3].cn = 1;
	int a;
	for (a = 0; a < vocab_size - 1; a++) {
    	vocab[a].code = (char *)calloc(vocab_size, sizeof(char));
    	vocab[a].point = (int *)calloc(vocab_size, sizeof(int));
	}

	//CreateBinaryTree();
	 
	expTable = (real *)malloc((EXP_TABLE_SIZE + 1) * sizeof(real));// 申请EXP_TABLE_SIZE+1个空间

    // 计算sigmoid值
    int i;
    for ( i = 0; i < EXP_TABLE_SIZE; i++) {
        printf( "%f\n", (i / (real)EXP_TABLE_SIZE * 2 - 1) * MAX_EXP ); // Precompute the exp() table
        //expTable[i] = expTable[i] / (expTable[i] + 1);                   // Precompute f(x) = x / (x + 1)
    }	
}

void ReadWord(char *word, FILE *fin, char *eof) {
  int a = 0, ch, count=0;
  while (1) {
  	//printf("%d\t", count++);
    ch = fgetc(fin);
    //printf("finish");
    //printf("%d\t", ch);
    if (ch == EOF) {
      *eof = 1;
      break;
    }
    if (ch == 13) continue;
    if ((ch == ' ') || (ch == '\t') || (ch == '\n')) {
      if (a > 0) {
        if (ch == '\n') ungetc(ch, fin);
        //printf("退出"); 
        break;
      }
      if (ch == '\n') {
        strcpy(word, (char *)"");
        return;
      } else continue;
    }
    word[a] = ch;
    a++;
    if (a >= MAX_STRING - 1) a--;   // Truncate too long words
  }
  
  word[a] = 0;
  /**
  int i=0;
  for(;i

}
// Returns hash value of a word
int GetWordHash(char *word) {
  unsigned long long a, hash = 0;
  for (a = 0; a < strlen(word); a++) hash = hash * 257 + word[a];
  printf("%d-%d",hash, vocab_hash_size);
  hash = hash % vocab_hash_size;
  printf("hash:%d\t", hash);
  return hash;
}

// Adds a word to the vocabulary
int AddWordToVocab(char *word) {
  printf("%s\t", word);
  unsigned int hash, length = strlen(word) + 1;
  if (length > MAX_STRING) length = MAX_STRING;
  vocab[vocab_size].word = (char *)calloc(length, sizeof(char));
  strcpy(vocab[vocab_size].word, word);
  vocab[vocab_size].cn = 0;
  vocab_size++;
  // Reallocate memory if needed
  if (vocab_size + 2 >= vocab_max_size) {
    vocab_max_size += 1000;
    vocab = (struct vocab_word *)realloc(vocab, vocab_max_size * sizeof(struct vocab_word));
  }
  hash = GetWordHash(word);
  while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
  vocab_hash[hash] = vocab_size - 1;
  return vocab_size - 1;
}

// Used later for sorting by word counts
int VocabCompare(const void *a, const void *b) {
  long long l = ((struct vocab_word *)b)->cn - ((struct vocab_word *)a)->cn;
  if (l > 0) return 1;
  if (l < 0) return -1;
  return 0;
}

// Sorts the vocabulary by frequency using word counts
void SortVocab() {
  int a, size;
  unsigned int hash;
  // Sort the vocabulary and keep  at the first position
  qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare);
  for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
  size = vocab_size;
  train_words = 0;
  for (a = 0; a < size; a++) {
    // Words occuring less than min_count times will be discarded from the vocab
    if ((vocab[a].cn < min_count) && (a != 0)) {
      vocab_size--;
      free(vocab[a].word);
    } else {
      // Hash will be re-computed, as after the sorting it is not actual
      hash=GetWordHash(vocab[a].word);
      while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
      vocab_hash[hash] = a;
      train_words += vocab[a].cn;
    }
  }
  vocab = (struct vocab_word *)realloc(vocab, (vocab_size + 1) * sizeof(struct vocab_word));
  // Allocate memory for the binary tree construction
  for (a = 0; a < vocab_size; a++) {
    vocab[a].code = (char *)calloc(MAX_CODE_LENGTH, sizeof(char));
    vocab[a].point = (int *)calloc(MAX_CODE_LENGTH, sizeof(int));
  }
}

void ReadVocab() {
  long long i = 0;
  int a;
  char c, eof = 0;
  char word[MAX_STRING];
  FILE *fin = fopen("aaa.txt", "rb");
  if (fin == NULL) {
    printf("Vocabulary file not found\n");
    exit(1);
  }

  //printf("%d", vocab_hash_size);
  for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
  vocab_size = 0;
  //printf("entry\t");
  while (1) {
    ReadWord(word, fin, &eof);
    //printf("ghehe");
    if (eof) break;
    a = AddWordToVocab(word);
    fscanf(fin, "%lld%c", &vocab[a].cn, &c);
    printf("cn:%d\t", vocab[a].cn);
    printf("c:%c\t", c);
    
    i++;

  }

  SortVocab();
  
  if (debug_mode > 0) {
    printf("Vocab size: %lld\n", vocab_size);
    printf("Words in train file: %lld\n", train_words);
  }
  /**
  fin = fopen(train_file, "rb");
  if (fin == NULL) {
    printf("ERROR: training data file not found!\n");
    exit(1);
  }
  fseek(fin, 0, SEEK_END);
  file_size = ftell(fin);
  **/
  fclose(fin);
}

void prepare(){
	int i;
	vocab = (struct vocab_word *)calloc(vocab_max_size, sizeof(struct vocab_word));
	vocab_hash = (int *)calloc(vocab_hash_size, sizeof(int));
	printf("%d",vocab_hash[0]);
	expTable = (real *)malloc((EXP_TABLE_SIZE + 1) * sizeof(real));
	for (i = 0; i < EXP_TABLE_SIZE; i++) {
		expTable[i] = exp((i / (real)EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table
		expTable[i] = expTable[i] / (expTable[i] + 1);                   // Precompute f(x) = x / (x + 1)
	}
} 
// Returns position of a word in the vocabulary; if the word is not found, returns -1
int SearchVocab(char *word) {
  unsigned int hash = GetWordHash(word);
  while (1) {
    if (vocab_hash[hash] == -1) return -1;
    if (!strcmp(word, vocab[vocab_hash[hash]].word)) {
    	printf("被占用:%s", vocab[vocab_hash[hash]].word) ;
    	return vocab_hash[hash];
	}
    hash = (hash + 1) % vocab_hash_size;
  }
  return -1;
}

void ReduceVocab() {
  int a, b = 0;
  unsigned int hash;
  for (a = 0; a < vocab_size; a++) if (vocab[a].cn > min_reduce) {
    vocab[b].cn = vocab[a].cn;
    vocab[b].word = vocab[a].word;
    b++;
  } else free(vocab[a].word);
  vocab_size = b;
  for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
  for (a = 0; a < vocab_size; a++) {
    // Hash will be re-computed, as it is not actual
    hash = GetWordHash(vocab[a].word);
    while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
    vocab_hash[hash] = a;
  }
  fflush(stdout);
  min_reduce++;
}

void LearnVocabFromTrainFile() {
  char word[MAX_STRING], eof = 0;
  FILE *fin;
  long long a, i, wc = 0;
  for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
  fin = fopen(train_file, "rb");
  if (fin == NULL) {
    printf("ERROR: training data file not found!\n");
    exit(1);
  }
  vocab_size = 0;
  AddWordToVocab((char *)"");
  while (1) {
    ReadWord(word, fin, &eof);
    if (eof) break;
    train_words++;
    wc++;
    printf("\n==================train_words:%d, wc:%d======================\n", train_words, wc);
    if ((debug_mode > 1) && (wc >= 1000000)) {
      printf("%lldM%c", train_words / 1000000, 13);
      fflush(stdout);
      wc = 0;
    }
    i = SearchVocab(word);
    if (i == -1) {
      a = AddWordToVocab(word);
      vocab[a].cn = 1;
    } else vocab[i].cn++;
    if (vocab_size > vocab_hash_size * 0.7) ReduceVocab();
  }
  SortVocab();
  if (debug_mode > 0) {
    printf("Vocab size: %lld\n", vocab_size);
    printf("Words in train file: %lld\n", train_words);
  }
  file_size = ftell(fin);
  fclose(fin);
}

void SaveVocab() {
  long long i;
  FILE *fo = fopen(save_vocab_file, "wb");
  for (i = 0; i < vocab_size; i++) fprintf(fo, "%s %lld\n", vocab[i].word, vocab[i].cn);
  fclose(fo);
}

void InitUnigramTable() {
  int a, i;
  double train_words_pow = 0;
  double d1, power = 0.75;
  table = (int *)malloc(table_size * sizeof(int));
  for (a = 0; a < vocab_size; a++) {
  	train_words_pow += pow(vocab[a].cn, power);
  }
  printf("train_words_pow:%f", train_words_pow);
  i = 0;
  d1 = pow(vocab[i].cn, power) / train_words_pow;
  printf("\nd1:%f\n", d1);
  for (a = 0; a < table_size; a++) {
    table[a] = i;
    if (a / (double)table_size > d1) {
      i++;
      d1 += pow(vocab[i].cn, power) / train_words_pow;
    }
    printf("\nd1:%f\n", d1);
    if (i >= vocab_size) i = vocab_size - 1;
  }
  int j;
  for(j=0; j<table_size; j++){
  	printf("%d", table[j]);
  }
}

void InitNet() {
  long long a, b;
  unsigned long long next_random = 1;
  a = posix_memalign((void **)&syn0, 128, (long long)vocab_size * layer1_size * sizeof(real));
  if (syn0 == NULL) {printf("Memory allocation failed\n"); exit(1);}
  if (hs) {
    a = posix_memalign((void **)&syn1, 128, (long long)vocab_size * layer1_size * sizeof(real));
    if (syn1 == NULL) {printf("Memory allocation failed\n"); exit(1);}
    for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++)
     syn1[a * layer1_size + b] = 0;
  }
  if (negative>0) {
    a = posix_memalign((void **)&syn1neg, 128, (long long)vocab_size * layer1_size * sizeof(real));
    if (syn1neg == NULL) {printf("Memory allocation failed\n"); exit(1);}
    for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++)
     syn1neg[a * layer1_size + b] = 0;
  }
  
  for (a = 0; a < vocab_size; a++) {
  	for (b = 0; b < layer1_size; b++) {
	    next_random = next_random * (unsigned long long)25214903917 + 11;
	    syn0[a * layer1_size + b] = (((next_random & 0xFFFF) / (real)65536) - 0.5) / layer1_size;
    }
  }
  
  printf("\n");
  for (a = 0; a < vocab_size; a++) {
    for (b = 0; b < layer1_size; b++) {
	  printf("%f\t", syn0[a*layer1_size+b]);
	} 
	printf("\n");
  }	
  CreateBinaryTree();
}

// Reads a word and returns its index in the vocabulary
int ReadWordIndex(FILE *fin, char *eof) {
  char word[MAX_STRING], eof_l = 0;
  ReadWord(word, fin, &eof_l);
  if (eof_l) {
    *eof = 1;
    return -1;
  }
  return SearchVocab(word);
}

void *TrainModelThread(void *id) {
  printf("========================");
  printf("\nTrainModelThread:\n");
  printf("========================");
  long long a, b, d, cw, word, last_word, sentence_length = 0, sentence_position = 0;
  long long word_count = 0, last_word_count = 0, sen[MAX_SENTENCE_LENGTH + 1];
  long long l1, l2, c, target, label, local_iter = iter;
  unsigned long long next_random = (long long)id;
  char eof = 0;
  real f, g;
  clock_t now;
  real *neu1 = (real *)calloc(layer1_size, sizeof(real));
  real *neu1e = (real *)calloc(layer1_size, sizeof(real));
  FILE *fi = fopen(train_file, "rb");
  fseek(fi, file_size / (long long)num_threads * (long long)id, SEEK_SET);
  while (1) {
    if (word_count - last_word_count > 10000) {
      word_count_actual += word_count - last_word_count;
      last_word_count = word_count;
      if ((debug_mode > 1)) {
        now=clock();
        printf("%cAlpha: %f  Progress: %.2f%%  Words/thread/sec: %.2fk  ", 13, alpha,
         word_count_actual / (real)(iter * train_words + 1) * 100,
         word_count_actual / ((real)(now - start + 1) / (real)CLOCKS_PER_SEC * 1000));
        fflush(stdout);
      }
      alpha = starting_alpha * (1 - word_count_actual / (real)(iter * train_words + 1));
      if (alpha < starting_alpha * 0.0001) alpha = starting_alpha * 0.0001;
    }
    if (sentence_length == 0) {
      while (1) {
        word = ReadWordIndex(fi, &eof);
        if (eof) break;
        if (word == -1) continue;
        word_count++;
        if (word == 0) break;
        // The subsampling randomly discards frequent words while keeping the ranking same
        if (sample > 0) {
          real ran = (sqrt(vocab[word].cn / (sample * train_words)) + 1) * (sample * train_words) / vocab[word].cn;
          next_random = next_random * (unsigned long long)25214903917 + 11;
          if (ran < (next_random & 0xFFFF) / (real)65536) continue;
        }
        sen[sentence_length] = word;
        sentence_length++;
        if (sentence_length >= MAX_SENTENCE_LENGTH) break;
      }
      sentence_position = 0;
    }
    if (eof || (word_count > train_words / num_threads)) {
      word_count_actual += word_count - last_word_count;
      local_iter--;
      if (local_iter == 0) break;
      word_count = 0;
      last_word_count = 0;
      sentence_length = 0;
      fseek(fi, file_size / (long long)num_threads * (long long)id, SEEK_SET);
      continue;
    }
    word = sen[sentence_position];
    if (word == -1) continue;
    for (c = 0; c < layer1_size; c++) neu1[c] = 0;
    for (c = 0; c < layer1_size; c++) neu1e[c] = 0;
    next_random = next_random * (unsigned long long)25214903917 + 11;
    b = next_random % window;
    if (cbow) {  //train the cbow architecture
      // in -> hidden
      cw = 0;
      for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
        c = sentence_position - window + a;
        if (c < 0) continue;
        if (c >= sentence_length) continue;
        last_word = sen[c];
        if (last_word == -1) continue;
        for (c = 0; c < layer1_size; c++) neu1[c] += syn0[c + last_word * layer1_size];
        cw++;
      }
      if (cw) {
        for (c = 0; c < layer1_size; c++) neu1[c] /= cw;
        if (hs) for (d = 0; d < vocab[word].codelen; d++) {
          f = 0;
          l2 = vocab[word].point[d] * layer1_size;
          // Propagate hidden -> output
          for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1[c + l2];
          if (f <= -MAX_EXP) continue;
          else if (f >= MAX_EXP) continue;
          else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];
          // 'g' is the gradient multiplied by the learning rate
          g = (1 - vocab[word].code[d] - f) * alpha;
          // Propagate errors output -> hidden
          for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2];
          // Learn weights hidden -> output
          for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * neu1[c];
        }
        // NEGATIVE SAMPLING
        if (negative > 0) for (d = 0; d < negative + 1; d++) {
          if (d == 0) {
            target = word;
            label = 1;
          } else {
            next_random = next_random * (unsigned long long)25214903917 + 11;
            target = table[(next_random >> 16) % table_size];
            if (target == 0) target = next_random % (vocab_size - 1) + 1;
            if (target == word) continue;
            label = 0;
          }
          l2 = target * layer1_size;
          f = 0;
          for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1neg[c + l2];
          if (f > MAX_EXP) g = (label - 1) * alpha;
          else if (f < -MAX_EXP) g = (label - 0) * alpha;
          else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha;
          for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2];
          for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * neu1[c];
        }
        // hidden -> in
        for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
          c = sentence_position - window + a;
          if (c < 0) continue;
          if (c >= sentence_length) continue;
          last_word = sen[c];
          if (last_word == -1) continue;
          for (c = 0; c < layer1_size; c++) syn0[c + last_word * layer1_size] += neu1e[c];
        }
      }
    } else {  //train skip-gram
      for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
        c = sentence_position - window + a;
        if (c < 0) continue;
        if (c >= sentence_length) continue;
        last_word = sen[c];
        if (last_word == -1) continue;
        l1 = last_word * layer1_size;
        for (c = 0; c < layer1_size; c++) neu1e[c] = 0;
        // HIERARCHICAL SOFTMAX
        if (hs) for (d = 0; d < vocab[word].codelen; d++) {
          f = 0;
          l2 = vocab[word].point[d] * layer1_size;
          // Propagate hidden -> output
          for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1[c + l2];
          if (f <= -MAX_EXP) continue;
          else if (f >= MAX_EXP) continue;
          else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];
          // 'g' is the gradient multiplied by the learning rate
          g = (1 - vocab[word].code[d] - f) * alpha;
          // Propagate errors output -> hidden
          for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2];
          // Learn weights hidden -> output
          for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * syn0[c + l1];
        }
        // NEGATIVE SAMPLING
        if (negative > 0) for (d = 0; d < negative + 1; d++) {
          if (d == 0) {
            target = word;
            label = 1;
          } else {
            next_random = next_random * (unsigned long long)25214903917 + 11;
            target = table[(next_random >> 16) % table_size];
            if (target == 0) target = next_random % (vocab_size - 1) + 1;
            if (target == word) continue;
            label = 0;
          }
          l2 = target * layer1_size;
          f = 0;
          for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1neg[c + l2];
          if (f > MAX_EXP) g = (label - 1) * alpha;
          else if (f < -MAX_EXP) g = (label - 0) * alpha;
          else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha;
          for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2];
          for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * syn0[c + l1];
        }
        // Learn weights input -> hidden
        for (c = 0; c < layer1_size; c++) syn0[c + l1] += neu1e[c];
      }
    }
    sentence_position++;
    if (sentence_position >= sentence_length) {
      sentence_length = 0;
      continue;
    }
  }
  fclose(fi);
  free(neu1);
  free(neu1e);
  pthread_exit(NULL);
}

void TrainModel() {
  long a, b, c, d;
  FILE *fo;
  pthread_t *pt = (pthread_t *)malloc(num_threads * sizeof(pthread_t));
  printf("Starting training using file %s\n", train_file);
  starting_alpha = alpha;
  if (read_vocab_file[0] != 0) ReadVocab(); else LearnVocabFromTrainFile();
  if (save_vocab_file[0] != 0) SaveVocab();
  if (output_file[0] == 0) return;
  InitNet();
  if (negative > 0) InitUnigramTable();
  
  start = clock();
  for (a = 0; a < num_threads; a++) pthread_create(&pt[a], NULL, TrainModelThread, (void *)(intptr_t) a);//intptr_t
  //WINPTHREAD_API pthread_create(pthread_t *th, const pthread_attr_t *attr, void *(* func)(void *), void *arg);
  for (a = 0; a < num_threads; a++) pthread_join(pt[a], NULL);
  fo = fopen(output_file, "wb");

  if (classes == 0) {
    // Save the word vectors
    fprintf(fo, "%lld %lld\n", vocab_size, layer1_size);
    for (a = 0; a < vocab_size; a++) {
      fprintf(fo, "%s ", vocab[a].word);
      if (binary) for (b = 0; b < layer1_size; b++) fwrite(&syn0[a * layer1_size + b], sizeof(real), 1, fo);
      else for (b = 0; b < layer1_size; b++) fprintf(fo, "%lf ", syn0[a * layer1_size + b]);
      fprintf(fo, "\n");
    }
  } else {
    // Run K-means on the word vectors
    int clcn = classes, iter = 10, closeid;
    int *centcn = (int *)malloc(classes * sizeof(int));
    int *cl = (int *)calloc(vocab_size, sizeof(int));
    real closev, x;
    real *cent = (real *)calloc(classes * layer1_size, sizeof(real));
    for (a = 0; a < vocab_size; a++) cl[a] = a % clcn;
    for (a = 0; a < iter; a++) {
      for (b = 0; b < clcn * layer1_size; b++) cent[b] = 0;
      for (b = 0; b < clcn; b++) centcn[b] = 1;
      for (c = 0; c < vocab_size; c++) {
        for (d = 0; d < layer1_size; d++) cent[layer1_size * cl[c] + d] += syn0[c * layer1_size + d];
        centcn[cl[c]]++;
      }
      for (b = 0; b < clcn; b++) {
        closev = 0;
        for (c = 0; c < layer1_size; c++) {
          cent[layer1_size * b + c] /= centcn[b];
          closev += cent[layer1_size * b + c] * cent[layer1_size * b + c];
        }
        closev = sqrt(closev);
        for (c = 0; c < layer1_size; c++) cent[layer1_size * b + c] /= closev;
      }
      for (c = 0; c < vocab_size; c++) {
        closev = -10;
        closeid = 0;
        for (d = 0; d < clcn; d++) {
          x = 0;
          for (b = 0; b < layer1_size; b++) x += cent[layer1_size * d + b] * syn0[c * layer1_size + b];
          if (x > closev) {
            closev = x;
            closeid = d;
          }
        }
        cl[c] = closeid;
      }
    }
    // Save the K-means classes
    for (a = 0; a < vocab_size; a++) fprintf(fo, "%s %d\n", vocab[a].word, cl[a]);
    free(centcn);
    free(cent);
    free(cl);
  }
  printf("\n\n\n运行结束");
  fclose(fo);
    /**
  **/
}

/***
int main(int argc, char **argv) {
	prepare(); 

	strcpy(train_file, "aa.txt");
	strcpy(save_vocab_file, "aaa.txt");
	strcpy(output_file, "output.txt");
	
	
	//testHafManTree();
	//ReadVocab();
	//LearnVocabFromTrainFile();
	//SaveVocab();
	
	//ReadVocab();
	
	//InitUnigramTable(); 

	//InitNet(); 

	TrainModel();
}
**/

int ArgPos(char *str, int argc, char **argv) {
  int a;
  for (a = 1; a < argc; a++) if (!strcmp(str, argv[a])) {
    if (a == argc - 1) {
      printf("Argument missing for %s\n", str);
      exit(1);
    }
    return a;
  }
  return -1;
}

int main(int argc, char **argv) {
  int i;
  
  prepare(); 

  strcpy(train_file, "aa.txt");
  strcpy(save_vocab_file, "aaa.txt");
  strcpy(output_file, "output.txt");

/**
  argc = 2;
  if (argc == 1) {
    printf("WORD VECTOR estimation toolkit v 0.1c\n\n");
    printf("Options:\n");
    printf("Parameters for training:\n");
    printf("\t-train \n");
    printf("\t\tUse text data from  to train the model\n");
    printf("\t-output \n");
    printf("\t\tUse  to save the resulting word vectors / word clusters\n");
    printf("\t-size \n");
    printf("\t\tSet size of word vectors; default is 100\n");
    printf("\t-window \n");
    printf("\t\tSet max skip length between words; default is 5\n");
    printf("\t-sample \n");
    printf("\t\tSet threshold for occurrence of words. Those that appear with higher frequency in the training data\n");
    printf("\t\twill be randomly down-sampled; default is 1e-3, useful range is (0, 1e-5)\n");
    printf("\t-hs \n");
    printf("\t\tUse Hierarchical Softmax; default is 0 (not used)\n");
    printf("\t-negative \n");
    printf("\t\tNumber of negative examples; default is 5, common values are 3 - 10 (0 = not used)\n");
    printf("\t-threads \n");
    printf("\t\tUse  threads (default 12)\n");
    printf("\t-iter \n");
    printf("\t\tRun more training iterations (default 5)\n");
    printf("\t-min-count \n");
    printf("\t\tThis will discard words that appear less than  times; default is 5\n");
    printf("\t-alpha \n");
    printf("\t\tSet the starting learning rate; default is 0.025 for skip-gram and 0.05 for CBOW\n");
    printf("\t-classes \n");
    printf("\t\tOutput word classes rather than word vectors; default number of classes is 0 (vectors are written)\n");
    printf("\t-debug \n");
    printf("\t\tSet the debug mode (default = 2 = more info during training)\n");
    printf("\t-binary \n");
    printf("\t\tSave the resulting vectors in binary moded; default is 0 (off)\n");
    printf("\t-save-vocab \n");
    printf("\t\tThe vocabulary will be saved to \n");
    printf("\t-read-vocab \n");
    printf("\t\tThe vocabulary will be read from , not constructed from the training data\n");
    printf("\t-cbow \n");
    printf("\t\tUse the continuous bag of words model; default is 1 (use 0 for skip-gram model)\n");
    printf("\nExamples:\n");
    printf("./word2vec -train data.txt -output vec.txt -size 200 -window 5 -sample 1e-4 -negative 5 -hs 0 -binary 0 -cbow 1 -iter 3\n\n");
    return 0;
  }

  output_file[0] = 0;
  save_vocab_file[0] = 0;
  read_vocab_file[0] = 0;

  if ((i = ArgPos((char *)"-size", argc, argv)) > 0) layer1_size = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-train", argc, argv)) > 0) strcpy(train_file, argv[i + 1]);
  if ((i = ArgPos((char *)"-save-vocab", argc, argv)) > 0) strcpy(save_vocab_file, argv[i + 1]);
  if ((i = ArgPos((char *)"-read-vocab", argc, argv)) > 0) strcpy(read_vocab_file, argv[i + 1]);
  if ((i = ArgPos((char *)"-debug", argc, argv)) > 0) debug_mode = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-binary", argc, argv)) > 0) binary = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-cbow", argc, argv)) > 0) cbow = atoi(argv[i + 1]);
  if (cbow) alpha = 0.05;
  if ((i = ArgPos((char *)"-alpha", argc, argv)) > 0) alpha = atof(argv[i + 1]);
  if ((i = ArgPos((char *)"-output", argc, argv)) > 0) strcpy(output_file, argv[i + 1]);
  if ((i = ArgPos((char *)"-window", argc, argv)) > 0) window = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-sample", argc, argv)) > 0) sample = atof(argv[i + 1]);
  if ((i = ArgPos((char *)"-hs", argc, argv)) > 0) hs = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-negative", argc, argv)) > 0) negative = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-threads", argc, argv)) > 0) num_threads = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-iter", argc, argv)) > 0) iter = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-min-count", argc, argv)) > 0) min_count = atoi(argv[i + 1]);
  if ((i = ArgPos((char *)"-classes", argc, argv)) > 0) classes = atoi(argv[i + 1]);
  **/
  
  vocab = (struct vocab_word *)calloc(vocab_max_size, sizeof(struct vocab_word));
  vocab_hash = (int *)calloc(vocab_hash_size, sizeof(int));
  expTable = (real *)malloc((EXP_TABLE_SIZE + 1) * sizeof(real));
  for (i = 0; i < EXP_TABLE_SIZE; i++) {
    expTable[i] = exp((i / (real)EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table
    expTable[i] = expTable[i] / (expTable[i] + 1);                   // Precompute f(x) = x / (x + 1)
  }

  TrainModel();
  return 0;
}

你可能感兴趣的:(word2vec)