树的直径

【定义】

我们将一棵树T = ( V,E )的直径定义为maxδ ( u,v ) ( u,v ∈ V ),也就是说,树中所有最短路径距离的最大值即为树的直径。

 

【做法】

例题传送门Cow Marathon(POJ 1985)

对于树的直径呢,我们老师给我们介绍了两种做法,一种是用两次bfs(或者dfs),另一种是用树形DP

 

1、两次bfs(或者dfs)

方法:先从任意一点P出发,找离它最远的点Q,再从点Q出发,找离它最远的点W,W到Q的距离就是是的直径

证明如下:

①若P已经在直径上,根据树的直径的定义可知Q也在直径上且为直径的一个端点

②若P不在直径上,我们用反证法,假设此时WQ不是直径,AB是直径

--->若AB与PQ有交点C,由于P到Q最远,那么PC+CQ>PC+CA,所以CQ>CA,易得CQ+CB>CA+CB,即CQ+CB>AB,与AB是直径矛盾,不成立,如下图(其中AB,PQ不一定是直线,画成直线是为了方便):

树的直径_第1张图片

--->若AB与PQ没有交点,M为AB上任意一点,N为PQ上任意一点。首先还是NP+NQ>NQ+MN+MB,同时减掉NQ,得NP>MN+MB,易知NP+MN>MB,所以NP+MN+MA>MB+MA,即NP+MN+MA>AB,与AB是直径矛盾,所以这种情况也不成立,如下图:

树的直径_第2张图片

代码(dfs):

#include
#include
#include
using namespace std;
const int N=100005;
int n,m,t,p,ans;
int d[N],first[N],v[N],w[N],next[N];
void add(int x,int y,int z)
{
	t++;
	next[t]=first[x];
	first[x]=t;
	v[t]=y;
	w[t]=z;
}
void dfs(int x,int father)
{
	int i,j;
	if(ans

 

2、树形DP

对于每个节点我们要记录两个值:

f1 [ i ] 表示以 i 为根的子树中,i 到叶子结点距离的最大值

f2 [ i ] 表示以 i 为根的子树中,i 到叶子结点距离的次大值

对于一个节点,它到叶子结点距离的最大值和次大致所经过的路径肯定是不一样的

若j是i的儿子,那么(下面的 w [ i ][ j ] 表示 i 到 j 的路径长度):

  1. 若 f1 [ i ] < f1 [ j ] + w [ i ][ j ],f2 [ i ] = f1 [ i ],f1 [ i ] = f1 [ j ] + w [ i ][ j ]
  2. 否则,若 f2 [ i ] < f1 [ j ] + w [ i ][ j ],f2 [ i ] = f1 [ j ] + w [ i ][ j ]; 

理解:这样做就是,先看能否更新最大值,若能,它的次大值就是原先的最大值,再更新它的最大值;若不能,就看能不能更新次大值,若能,就更新,不能就不管它

这样的话,最后的答案 answer = max { f1 [ i ] + f2 [ i ] }

代码(这是从叶节点到根节点的DP):

#include
#include
#include
using namespace std;
const int N=100005;
int n,m,t,ans;
int f1[N],f2[N];
int first[N],v[N],w[N],next[N];
void add(int x,int y,int z)
{
	t++;
	next[t]=first[x];
	first[x]=t;
	v[t]=y;
	w[t]=z;
}
void dp(int x,int father)
{
	int i,j;
	for(i=first[x];i;i=next[i])
	{
		j=v[i];
		if(j==father)
		  continue;
		dp(j,x);
		if(f1[x]

 

你可能感兴趣的:(#,知识点)