//产生一个随机数
ThreadLocalRandom.current().nextInt(100)
java8 实际测试效果:
线程数量 | 线程内循环生产次数 | random耗时(毫秒) | ThreadLocalRandom耗时(毫秒) |
---|---|---|---|
1 | 1w | 6 | 11 |
10 | 1w | 16 | 15 |
10 | 10w | 101 | 65 |
50 | 1w | 56 | 54 |
50 | 10w | 509 | 115 |
100 | 1w | 105 | 80 |
100 | 10w | 1115 | 131 |
import java.util.Random;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadLocalRandom;
public class ThreadLocalRandomTask {
private static Random random = ThreadLocalRandom.current();
public static void main(String[] args) {
ExecutorService taskPool = Executors.newCachedThreadPool();
for(int n = 1; n < 10; n++) {
taskPool.submit(() -> System.out.println(random.nextInt()));
}
taskPool.shutdown();
}
}
基于jdk 1.8。
ThreadLocalRandom extends Random,使用方法大致相同。
package java.util.concurrent;
import java.io.ObjectStreamField;
import java.util.Random;
import java.util.Spliterator;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.function.DoubleConsumer;
import java.util.function.IntConsumer;
import java.util.function.LongConsumer;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import java.util.stream.LongStream;
import java.util.stream.StreamSupport;
import sun.misc.VM;
/**
* ThreadLocalRandom的实例在密码上是不安全的,安全敏感的程序应该使用
* java.security中的SecureRandom
* @since 1.7
* @author Doug Lea
*/
public class ThreadLocalRandom extends Random {
/*
* 使用一个静态实例来访问Thread中的threadLocalRandomSeed值 = seed值。
*/
/** 生成每个线程的初始化/探测字段 */
private static final AtomicInteger probeGenerator =
new AtomicInteger();
/**
* The next seed for default constructors.
*/
private static final AtomicLong seeder = new AtomicLong(initialSeed());
//初始化一个种子,值是固定的
private static long initialSeed() {
String sec = VM.getSavedProperty("java.util.secureRandomSeed");
if (Boolean.parseBoolean(sec)) {
byte[] seedBytes = java.security.SecureRandom.getSeed(8);
long s = (long)(seedBytes[0]) & 0xffL;
for (int i = 1; i < 8; ++i)
s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
return s;
}
return (mix64(System.currentTimeMillis()) ^
mix64(System.nanoTime()));
}
/**
* The seed increment
*/
private static final long GAMMA = 0x9e3779b97f4a7c15L;
/**
* The increment for generating probe values
*/
private static final int PROBE_INCREMENT = 0x9e3779b9;
/**
* The increment of seeder per new instance
*/
private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL;
// Constants from SplittableRandom
private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53)
private static final float FLOAT_UNIT = 0x1.0p-24f; // 1.0f / (1 << 24)
/** Rarely-used holder for the second of a pair of Gaussians */
private static final ThreadLocal<Double> nextLocalGaussian =
new ThreadLocal<Double>();
private static long mix64(long z) {
z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
return z ^ (z >>> 33);
}
private static int mix32(long z) {
z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
}
/**
* Field used only during singleton initialization.
* True when constructor completes.
*/
boolean initialized;
/** Constructor used only for static singleton */
private ThreadLocalRandom() {
initialized = true; // false during super() call
}
/** The common ThreadLocalRandom */
static final ThreadLocalRandom instance = new ThreadLocalRandom();
/**
* 初始化,主要是获取当前线程并设置当前线程对应的seed和probe探针值
* 每次获取后,(跨Thread)seed值都会变化(加上了增量SEEDER_INCREMENT)
*/
static final void localInit() {
int p = probeGenerator.addAndGet(PROBE_INCREMENT);
int probe = (p == 0) ? 1 : p; // skip 0
long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
Thread t = Thread.currentThread();
UNSAFE.putLong(t, SEED, seed);
UNSAFE.putInt(t, PROBE, probe);
}
/**
* 如果获取值 = 0,则初始化,否则直接使用静态实例
*/
public static ThreadLocalRandom current() {
if (UNSAFE.getInt(Thread.currentThread(), PROBE) == 0)
localInit();
return instance;
}
/**
* 无效操作
*/
public void setSeed(long seed) {
// only allow call from super() constructor
if (initialized)
throw new UnsupportedOperationException();
}
//生成当前线程对应的下一个seed,并保存到对应Thread,种子加上固定的
//增量值 GAMMA
final long nextSeed() {
Thread t; long r; // read and update per-thread seed
UNSAFE.putLong(t = Thread.currentThread(), SEED,
r = UNSAFE.getLong(t, SEED) + GAMMA);
return r;
}
// We must define this, but never use it.
protected int next(int bits) {
return (int)(mix64(nextSeed()) >>> (64 - bits));
}
// IllegalArgumentException messages
static final String BadBound = "bound must be positive";
static final String BadRange = "bound must be greater than origin";
static final String BadSize = "size must be non-negative";
/**
* The form of nextLong used by LongStream Spliterators. If
* origin is greater than bound, acts as unbounded form of
* nextLong, else as bounded form.
* 如果 origin >= bound 则不使用值大小限定。
* //ps: 如果是2的n此幂,则取差值利用位运算获取比差值小,然后算出随机数r
*
* @param origin the least value, unless greater than bound
* @param bound the upper bound (exclusive), must not equal origin
* @return a pseudorandom value
*/
final long internalNextLong(long origin, long bound) {
long r = mix64(nextSeed());
if (origin < bound) {
long n = bound - origin, m = n - 1;
if ((n & m) == 0L) // power of two
r = (r & m) + origin;
else if (n > 0L) { // reject over-represented candidates
//确保非负数,产生随机数每次变小相加直到符合条件
for (long u = r >>> 1; // ensure nonnegative
u + m - (r = u % n) < 0L; // rejection check
u = mix64(nextSeed()) >>> 1) // retry
;
r += origin;
}
else {
//r不再范围内,则重新生成
//ps://bound为正,origin为负,可能导致超过Long最大值,这时随机生成范围内的值
while (r < origin || r >= bound)
r = mix64(nextSeed());
}
}
return r;
}
final int internalNextInt(int origin, int bound) {
int r = mix32(nextSeed());
if (origin < bound) {
int n = bound - origin, m = n - 1;
if ((n & m) == 0)
r = (r & m) + origin;
else if (n > 0) {
for (int u = r >>> 1;
u + m - (r = u % n) < 0;
u = mix32(nextSeed()) >>> 1)
;
r += origin;
}
else {
while (r < origin || r >= bound)
r = mix32(nextSeed());
}
}
return r;
}
/**
* double 内部使用的nextLong()
*/
final double internalNextDouble(double origin, double bound) {
double r = (nextLong() >>> 11) * DOUBLE_UNIT;
if (origin < bound) {
r = r * (bound - origin) + origin;
if (r >= bound) // correct for rounding
r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
}
return r;
}
public int nextInt() {
return mix32(nextSeed());
}
public int nextInt(int bound) {
if (bound <= 0)
throw new IllegalArgumentException(BadBound);
int r = mix32(nextSeed());
int m = bound - 1;
if ((bound & m) == 0) // power of two
r &= m;
else { // reject over-represented candidates
for (int u = r >>> 1;
u + m - (r = u % bound) < 0;
u = mix32(nextSeed()) >>> 1)
;
}
return r;
}
public int nextInt(int origin, int bound) {
if (origin >= bound)
throw new IllegalArgumentException(BadRange);
return internalNextInt(origin, bound);
}
public long nextLong() {
return mix64(nextSeed());
}
public long nextLong(long bound) {
if (bound <= 0)
throw new IllegalArgumentException(BadBound);
long r = mix64(nextSeed());
long m = bound - 1;
if ((bound & m) == 0L) // power of two
r &= m;
else { // reject over-represented candidates
for (long u = r >>> 1;
u + m - (r = u % bound) < 0L;
u = mix64(nextSeed()) >>> 1)
;
}
return r;
}
public long nextLong(long origin, long bound) {
if (origin >= bound)
throw new IllegalArgumentException(BadRange);
return internalNextLong(origin, bound);
}
public double nextDouble() {
return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
}
public double nextDouble(double bound) {
if (!(bound > 0.0))
throw new IllegalArgumentException(BadBound);
double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
return (result < bound) ? result : // correct for rounding
Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
}
public double nextDouble(double origin, double bound) {
if (!(origin < bound))
throw new IllegalArgumentException(BadRange);
return internalNextDouble(origin, bound);
}
//ps: //正数或者0 = false,负数 = true,
//恰好默认数值因为符号位的原因,负数比正数多一个数,所以正好平衡。
public boolean nextBoolean() {
return mix32(nextSeed()) < 0;
}
public float nextFloat() {
return (mix32(nextSeed()) >>> 8) * FLOAT_UNIT;
}
public double nextGaussian() {
// Use nextLocalGaussian instead of nextGaussian field
Double d = nextLocalGaussian.get();
if (d != null) {
nextLocalGaussian.set(null);
return d.doubleValue();
}
double v1, v2, s;
do {
v1 = 2 * nextDouble() - 1; // between -1 and 1
v2 = 2 * nextDouble() - 1; // between -1 and 1
s = v1 * v1 + v2 * v2;
} while (s >= 1 || s == 0);
double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
nextLocalGaussian.set(new Double(v2 * multiplier));
return v1 * multiplier;
}
// stream methods, coded in a way intended to better isolate for
// maintenance purposes the small differences across forms.
/**
* 从intStream中拆出int数据以得到IntStream(限定了streamSize)
* @since 1.8
*/
public IntStream ints(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
return StreamSupport.intStream
(new RandomIntsSpliterator
(0L, streamSize, Integer.MAX_VALUE, 0),
false);
}
public IntStream ints() {
return StreamSupport.intStream
(new RandomIntsSpliterator
(0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
false);
}
public IntStream ints(long streamSize, int randomNumberOrigin,
int randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BadRange);
return StreamSupport.intStream
(new RandomIntsSpliterator
(0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
}
public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BadRange);
return StreamSupport.intStream
(new RandomIntsSpliterator
(0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
}
public LongStream longs(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
return StreamSupport.longStream
(new RandomLongsSpliterator
(0L, streamSize, Long.MAX_VALUE, 0L),
false);
}
public LongStream longs() {
return StreamSupport.longStream
(new RandomLongsSpliterator
(0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
false);
}
public LongStream longs(long streamSize, long randomNumberOrigin,
long randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BadRange);
return StreamSupport.longStream
(new RandomLongsSpliterator
(0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
}
public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BadRange);
return StreamSupport.longStream
(new RandomLongsSpliterator
(0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
}
public DoubleStream doubles(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(0L, streamSize, Double.MAX_VALUE, 0.0),
false);
}
public DoubleStream doubles() {
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
false);
}
public DoubleStream doubles(long streamSize, double randomNumberOrigin,
double randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
if (!(randomNumberOrigin < randomNumberBound))
throw new IllegalArgumentException(BadRange);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
}
public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
if (!(randomNumberOrigin < randomNumberBound))
throw new IllegalArgumentException(BadRange);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
}
/**
* 用于int流的Spliterator。我们将四个int版本多路复用到一个类中,
* 方法是将一个小于原点的绑定视为无界,并将“infinite”视为等同于
* Long.MAX_VALUE。对于分割,它使用标准的二除法。这个类的长版本
* 和双版本除了类型之外是相同的。
* ps://等学习stream再深入了解,这里当成一个支持类即可
*/
static final class RandomIntsSpliterator implements Spliterator.OfInt {
long index;
final long fence;
final int origin;
final int bound;
RandomIntsSpliterator(long index, long fence,
int origin, int bound) {
this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomIntsSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomIntsSpliterator(i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(IntConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(ThreadLocalRandom.current().internalNextInt(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(IntConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
int o = origin, b = bound;
ThreadLocalRandom rng = ThreadLocalRandom.current();
do {
consumer.accept(rng.internalNextInt(o, b));
} while (++i < f);
}
}
}
/**
* Spliterator for long streams.
*/
static final class RandomLongsSpliterator implements Spliterator.OfLong {
long index;
final long fence;
final long origin;
final long bound;
RandomLongsSpliterator(long index, long fence,
long origin, long bound) {
this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomLongsSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomLongsSpliterator(i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(LongConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(ThreadLocalRandom.current().internalNextLong(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(LongConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
long o = origin, b = bound;
ThreadLocalRandom rng = ThreadLocalRandom.current();
do {
consumer.accept(rng.internalNextLong(o, b));
} while (++i < f);
}
}
}
/**
* Spliterator for double streams.
*/
static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
long index;
final long fence;
final double origin;
final double bound;
RandomDoublesSpliterator(long index, long fence,
double origin, double bound) {
this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomDoublesSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomDoublesSpliterator(i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(DoubleConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(ThreadLocalRandom.current().internalNextDouble(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(DoubleConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
double o = origin, b = bound;
ThreadLocalRandom rng = ThreadLocalRandom.current();
do {
consumer.accept(rng.internalNextDouble(o, b));
} while (++i < f);
}
}
}
/**
* 探针是保存在当前线程中的,调用ThreadLocalRandom.current()初始化
*/
static final int getProbe() {
return UNSAFE.getInt(Thread.currentThread(), PROBE);
}
/**
* 伪随机生成新探针值
*/
static final int advanceProbe(int probe) {
probe ^= probe << 13; // xorshift
probe ^= probe >>> 17;
probe ^= probe << 5;
UNSAFE.putInt(Thread.currentThread(), PROBE, probe);
return probe;
}
/**
* Returns the pseudo-randomly initialized or updated secondary seed.
*/
static final int nextSecondarySeed() {
int r;
Thread t = Thread.currentThread();
if ((r = UNSAFE.getInt(t, SECONDARY)) != 0) {
r ^= r << 13; // xorshift
r ^= r >>> 17;
r ^= r << 5;
}
else {
localInit();
if ((r = (int)UNSAFE.getLong(t, SEED)) == 0)
r = 1; // avoid zero
}
UNSAFE.putInt(t, SECONDARY, r);
return r;
}
// Serialization support
private static final long serialVersionUID = -5851777807851030925L;
/**
* @serialField rnd long
* seed for random computations
* @serialField initialized boolean
* always true
*/
private static final ObjectStreamField[] serialPersistentFields = {
new ObjectStreamField("rnd", long.class),
new ObjectStreamField("initialized", boolean.class),
};
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
java.io.ObjectOutputStream.PutField fields = s.putFields();
fields.put("rnd", UNSAFE.getLong(Thread.currentThread(), SEED));
fields.put("initialized", true);
s.writeFields();
}
private Object readResolve() {
return current();
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long SEED;
private static final long PROBE;
private static final long SECONDARY;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> tk = Thread.class;
SEED = UNSAFE.objectFieldOffset
(tk.getDeclaredField("threadLocalRandomSeed"));
PROBE = UNSAFE.objectFieldOffset
(tk.getDeclaredField("threadLocalRandomProbe"));
SECONDARY = UNSAFE.objectFieldOffset
(tk.getDeclaredField("threadLocalRandomSecondarySeed"));
} catch (Exception e) {
throw new Error(e);
}
}
}