[转]关于MinGW的几个包的说明
总的来说,GCC应该是一个编译器。可是,为什么我还要在这里介绍GCC的家族成员呢?其实,整套的GCC环境并不是由GCC构成的,他是由多个包所组成的。这些包的互相作用产生了GCC的开发环境。其中,有一些包是你开发应用程序所必备的基本包。离开这些包你将无法正常使用GCC。
GCC的基本开发环境,主要由一下几个包构成。
Binutils,这个是辅助GCC的工具包,里面包含了连接器,汇编器,动态静态库生成程序,等等。
GCC,这个包是GCC本身。当然GCC包中还包括一下几个包,如core,java,ada等,每个包都代表了一种语言。
win32api,mingw-runtime,这个是在Win32下使用的标准函数包。如果,你使用的是Cygwin或者是在Unix环境下,那么这个包就是GlibC。
所以,由上所述。GCC的基本包有:binutils gcc glibc/[win32api,mingw-runtime]有了这些包。你基本能够开始编译应用程序了。
当然,如果说你想要写一个小程序。自然这些包已经够了。但是如果你要写一个较大的工程。那么,这些包也许就不能很好的胜任你的工作了。因为,对于一个大的项目,需要编译的文件不只一个,而且还有依赖关系等等。
所以,GCC中还包括gmake包用于管理项目。当然,还有automake。但是我个人还是不太喜欢automake,automake其实是帮助你自动的管理你的项目,当然实现这个自动也是比较麻烦的,所以与其用automake管理中小型项目,不如用gmake自己写个脚本。不过,automake通常用于源代码发布的应用,如果在开发时使用会延长开发周期。
Gmake,automake,都是通过编译脚本来批量的编译程序。他们能够更具你所给定的依赖关系,来自动的判断需要重新编译的源代码,然后编译。这点的确可以帮助开发人员减轻不少的人力和开发周期。比如,你用Makefile管理一个项目,那么在你第一次编译程序以后,如果你的源代码没有做过任何编辑,那么下次再调用gmake的程序时,gmake就不会再去一一编译每个文件。而是简单的连接一下主程序,或者什么都不作的退出(这要取决于你写的Makefile脚本)
但是,对于有些开发人员来说,上面这些包还是不能满足他们的要求。因为他们要调试程序。所以,GCC还包括另一个包。那就是GDB,gdb是GCC开发的,用于跟踪调试的,命令符型调试器。它的功能还是比较强大的。基本,你能在VC下做到的,GDB也可以。不过,GDB的命令还是比较多的。掌握一些基本的调试命令一般就够使用了。
总结
GCC开发环境包括如下几大包。
binary,基本包,提供基本的汇编器,连接器等
gcc,基本包,各种语言的编译器,包括C,C++,Ada,Java等
Win32api,mingwi-runtime/glibc,基本包,系统函数库
Gmake/automake,需要包,管理项目编译的程序
gdb,附加包,调试程序
GCC的常用编译参数
同VC,TC等编译器不同,GCC其实是可以很方便的在提示符下编译程序的。GCC在提示符下编译程序,并没有如同VC那样的冗长而晦涩的编译参数。相反,却有着比VC更灵活且简短的参数。
不得不承认,不懂GCC编译参数的人,确实会损失一些GCC的强大功能。所以,我下面简单介绍一下GCC的一些基本编译参数。这里,我以C编译器为例。
编译二进制代码
$gcc -c yours.c -o yours.o
使用这段指令,GCC将会把yours.c编译成yours.o的二进制代码。其中,yours.o就类似于VC,TC中的.obj文档。
编译最简单的小程序。
$gcc -o yours yours.c
通过这条指令,GCC将会把yours.c源代码编译成名为yours的可执行程序。当然,您也可以将yours.c改成我们刚才介绍的yours.o文件。这样,gcc将使用编译刚才编译好的二进制文档来链接程序。这里,格式的特点是,-o 后面是一串文件列表,第一个参数是所编译程序的文件名,从第二个开始,就是您编译和连接该可执行程序所需要的二进制文档或者源代码。
编译时将自己的头文件目录设为默认头文件目录
$gcc -I”Your_Include_Files_Document_Path” -c yours.c -o yours.o
这条指令中的-I参数将会把Your_Include_Files_Document_Path添加到你默认的头文件目录中。这样您将可以使用 #include
编译时使用自己的静态库存放目录
$gcc -L”Your_Lib_Files_Document_Path” -o yours yours.o
这条指令将会让GCC在连接时除了在默认Lib存放目录中搜索指定的静态库以外,还会在Your_Lib_Files_Document_Path中搜索。
编译时使用静态连接库
$gcc -lyour_lib -o yours yours.o
这条指令将会让GCC在连接时把 libyour_lib.a中您所用到的函数连接到可执行程序中。此处注意,GCC所使用的静态连接库是lib*.a格式的。在连接时,只且仅需要提供*的内容就可以了。
编译时使用优化
$gcc -O2 -c yours.c -o yours.o
使用优化方式编译程序,其中除了-O2以外,还有-O3 -O1等等。他们代表不同的优化等级。最常用的,是-O2优化。当然,还有针对特殊CPU的优化,这里就不介绍了。
编译时显示所有错误和警告信息
$gcc -Wall -c yours.c -o yours.o
GCC在默认情况下,将对一些如变量申请未使用这样的问题或者申请了没有给予初始值的问题忽略。但是,如果使用了-Wall参数,编辑器将列出所有的警告信息。这样,您就可以知道您的代码中有多少可能会在其他操作系统下出错的地方了。(用这个指令看看你的代码有多少地方写的不怎么合适。)
编译连接时,加入调试代码
$gcc -g -o yours yours.c
正如同VC有debug编译模式一样,GCC也有debug模式。添加了-g 参数编译的可执行程序比普通程序略为大一些,其中添加了一些调试代码。这些代码将被gdb所支持。
连接时缩小代码体积
$gcc -s -o yours yours.o
这个参数,似乎我没有在Unix环境下看到过。也不知道具体什么作用。因为有人说Visual-MinGW生成的代码小,于是研究了一下她的编译参数,发现release模式的编译参数就加了这一项。貌似编译后的代码的确缩小了很多。
获得帮助
$gcc --help
这条指令从意思上就能看出,获得gcc的帮助信息。如果您有什么特殊需要,也许这个指令能帮上点小忙。
第三节 如何写一个简单的Makefile
说了半天Makefile管理项目,我想现在该说一下如何写了。其实,Makefile文件总体还是比较容易写的,基本只要你会使用命令行,就可以写Makefile。下面我简单介绍一下Makefile的构成和书写。
一个输出 HelloWorld 的简单Makefile
all:
echo HelloWorld
这个Makefile代码,运行后将在屏幕上打印一个HelloWorld。all其实是类似C代码中的main函数。gmake程序将在运行Makefile代码时,首先运行此处的代码。注意,此处echo前面的是
添加依赖项的Makefile
all:depend
@echo I am the main
depend:closeecho
@echo I am the depend
closeecho:
@echo off
这个Makefile代码,的作用还是输出句子。不同的是她添加了几个指令块之间的依赖关系。其中all依赖于depend,depend依赖于closeecho。这样,程序在编译时将根据脚本的依赖关系来判断文件编译的先后顺序。
执行Makefile
$make -f Makefile
通常情况下,不用-f参数,make程序将在当前目录下搜索名为Makefile的文件作为需要执行的文件。而使用-f将指定Makefile的文件名。
一个完整的Makefile
all:yours
@echo OK
yours:yours.o
gcc -o yours yours.o
yours.o:yours.c
gcc -c yours.c -o yours.o
更多有关Makefile的详细内容请查相关资料。
GCC中文使用手册
NAME
gcc,g++-GNU工程的C和C++编译器(egcs-1.1.2)
总览(SYNOPSIS)
gcc[option|filename ]...
g++[option|filename ]...
警告(WARNING)
本手册页内容摘自GNU C编译器的完整文档,仅限于解释选项的含义.
除非有人自愿维护,否则本手册页不再更新.如果发现手册页和软件之间有所矛盾,请查对Info文件, Info文件是权威文档.
如果我们发觉本手册页的内容由于过时而导致明显的混乱和抱怨时,我们就停止发布它.不可能有其他选择,象更新Info文件同时更新man手册,因为其他维护GNU CC的工作没有留给我们时间做这个. GNU工程认为man手册是过时产物,应该把时间用到别的地方.
如果需要完整和最新的文档,请查阅Info文件`gcc'或Using and Porting GNU CC (for version 2.0) (使用和移植GNU CC 2.0) 手册.二者均来自Texinfo原文件 gcc.texinfo.
描述(DESCRIPTION)
C和C++编译器是集成的.他们都要用四个步骤中的一个或多个处理输入文件: 预处理(preprocessing),编译(compilation),汇编(assembly)和连接(linking).源文件后缀名标识源文件的 语言,但是对编译器来说,后缀名控制着缺省设定:
gcc
认为预处理后的文件(.i)是C文件,并且设定C形式的连接.
g++
认为预处理后的文件(.i)是C++文件,并且设定C++形式的连接.
源文件后缀名指出语言种类以及后期的操作:
.c C源程序;预处理,编译,汇编
.C C++源程序;预处理,编译,汇编
.cc C++源程序;预处理,编译,汇编
.cxx C++源程序;预处理,编译,汇编
.m Objective-C源程序;预处理,编译,汇编
.i 预处理后的C文件;编译,汇编
.ii 预处理后的C++文件;编译,汇编
.s 汇编语言源程序;汇编
.S 汇编语言源程序;预处理,汇编
.h 预处理器文件;通常不出现在命令行上
其他后缀名的文件被传递给连接器(linker).通常包括:
.o 目标文件(Object file)
.a 归档库文件(Archive file)
除非使用了-c, -S,或-E选项(或者编译错误阻止了完整的过程),否则连接总是 最后的步骤.在连接阶段中,所有对应于源程序的.o文件, -l库文件,无法识别的文件名(包括指定的 .o目标文件和.a库文件)按命令行中的顺序传递给连接器.
选项(OPTIONS)
选项必须分立给出: `-dr'完全不同于`-d -r '.
大多数`-f'和`-W'选项有两个相反的格式: -fname和 -fno-name (或-Wname和-Wno-name).这里 只列举不是默认选项的格式.
下面是所有选项的摘要,按类型分组,解释放在后面的章节中.
总体选项(Overall Option)
-c -S -E -o file -pipe -v -x language
语言选项(Language Option)
-ansi -fall-virtual -fcond-mismatch -fdollars-in-identifiers -fenum-int-equiv -fexternal-templates -fno-asm -fno-builtin -fhosted -fno-hosted -ffreestanding -fno-freestanding -fno-strict-prototype -fsigned-bitfields -fsigned-char -fthis-is-variable -funsigned-bitfields -funsigned-char -fwritable-strings -traditional -traditional-cpp -trigraphs
警告选项(Warning Option)
-fsyntax-only -pedantic -pedantic-errors -w -W -Wall -Waggregate-return -Wcast-align -Wcast-qual -Wchar-subscript -Wcomment -Wconversion -Wenum-clash -Werror -Wformat -Wid-clash-len -Wimplicit -Wimplicit-int -Wimplicit-function-declaration -Winline -Wlong-long -Wmain -Wmissing-prototypes -Wmissing-declarations -Wnested-externs -Wno-import -Wparentheses -Wpointer-arith -Wredundant-decls -Wreturn-type -Wshadow -Wstrict-prototypes -Wswitch -Wtemplate-debugging -Wtraditional -Wtrigraphs -Wuninitialized -Wunused -Wwrite-strings
调试选项(Debugging Option)
-a -dletters -fpretend-float -g -glevel -gcoff -gxcoff -gxcoff+ -gdwarf -gdwarf+ -gstabs -gstabs+ -ggdb -p -pg -save-temps -print-file-name=library -print-libgcc-file-name -print-prog-name=program
优化选项(Optimization Option)
-fcaller-saves -fcse-follow-jumps -fcse-skip-blocks -fdelayed-branch -felide-constructors -fexpensive-optimizations -ffast-math -ffloat-store -fforce-addr -fforce-mem -finline-functions -fkeep-inline-functions -fmemoize-lookups -fno-default-inline -fno-defer-pop -fno-function-cse -fno-inline -fno-peephole -fomit-frame-pointer -frerun-cse-after-loop -fschedule-insns -fschedule-insns2 -fstrength-reduce -fthread-jumps -funroll-all-loops -funroll-loops -O -O2 -O3
预处理器选项(Preprocessor Option)
-Aassertion -C -dD -dM -dN -Dmacro[=defn] -E -H -idirafter dir -include file -imacros file -iprefix file -iwithprefix dir -M -MD -MM -MMD -nostdinc -P -Umacro -undef
汇编器选项(Assembler Option)
-Wa,option
连接器选项(Linker Option)
-llibrary -nostartfiles -nostdlib -static -shared -symbolic -Xlinker option -Wl,option -u symbol
目录选项(Directory Option)
-Bprefix -Idir -I- -Ldir
目标机选项(Target Option)
-b machine -V version
配置相关选项(Configuration Dependent Option)
M680x0 选项
-m68000 -m68020 -m68020-40 -m68030 -m68040 -m68881 -mbitfield -mc68000 -mc68020 -mfpa -mnobitfield -mrtd -mshort -msoft-float
VAX选项
-mg -mgnu -munix
SPARC选项
-mepilogue -mfpu -mhard-float -mno-fpu -mno-epilogue -msoft-float -msparclite -mv8 -msupersparc -mcypress
Convex选项
-margcount -mc1 -mc2 -mnoargcount
AMD29K选项
-m29000 -m29050 -mbw -mdw -mkernel-registers -mlarge -mnbw -mnodw -msmall -mstack-check -muser-registers
M88K选项
-m88000 -m88100 -m88110 -mbig-pic -mcheck-zero-division -mhandle-large-shift -midentify-revision -mno-check-zero-division -mno-ocs-debug-info -mno-ocs-frame-position -mno-optimize-arg-area -mno-serialize-volatile -mno-underscores -mocs-debug-info -mocs-frame-position -moptimize-arg-area -mserialize-volatile -mshort-data-num -msvr3 -msvr4 -mtrap-large-shift -muse-div-instruction -mversion-03.00 -mwarn-passed-structs
RS6000选项
-mfp-in-toc -mno-fop-in-toc
RT选项
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs -mfull-fp-blocks -mhc-struct-return -min-line-mul -mminimum-fp-blocks -mnohc-struct-return
MIPS选项
-mcpu=cpu type -mips2 -mips3 -mint64 -mlong64 -mmips-as -mgas -mrnames -mno-rnames -mgpopt -mno-gpopt -mstats -mno-stats -mmemcpy -mno-memcpy -mno-mips-tfile -mmips-tfile -msoft-float -mhard-float -mabicalls -mno-abicalls -mhalf-pic -mno-half-pic -G num -nocpp
i386选项
-m486 -mno-486 -msoft-float -mno-fp-ret-in-387
HPPA选项
-mpa-risc-1-0 -mpa-risc-1-1 -mkernel -mshared-libs -mno-shared-libs -mlong-calls -mdisable-fpregs -mdisable-indexing -mtrailing-colon
i960选项
-mcpu-type -mnumerics -msoft-float -mleaf-procedures -mno-leaf-procedures -mtail-call -mno-tail-call -mcomplex-addr -mno-complex-addr -mcode-align -mno-code-align -mic-compat -mic2.0-compat -mic3.0-compat -masm-compat -mintel-asm -mstrict-align -mno-strict-align -mold-align -mno-old-align
DEC Alpha选项
-mfp-regs -mno-fp-regs -mno-soft-float -msoft-float
System V选项
-G -Qy -Qn -YP,paths -Ym,dir
代码生成选项(Code Generation Option)
-fcall-saved-reg -fcall-used-reg -ffixed-reg -finhibit-size-directive -fnonnull-objects -fno-common -fno-ident -fno-gnu-linker -fpcc-struct-return -fpic -fPIC -freg-struct-return -fshared-data -fshort-enums -fshort-double -fvolatile -fvolatile-global -fverbose-asm
总体选项(Overall Option)
-x language
明确指出后面输入文件的语言为language (而不是从文件名后缀得到的默认选择).这个选项应用于后面 所有的输入文件,直到遇着下一个`-x'选项. language的可选值有`c', `objective-c', `c-header', `c++', `cpp-output', `assembler',和`assembler-with-cpp'.
-x none
关闭任何对语种的明确说明,因此依据文件名后缀处理后面的文件(就象是从未使用过`-x'选项).
如果只操作四个阶段(预处理,编译,汇编,连接)中的一部分,可以使用`-x'选项(或文件名后缀)告诉 gcc从哪里开始,用`-c', `-S',或`-E'选项告诉gcc到 哪里结束.注意,某些选项组合(例如, `-x cpp-output -E')使gcc不作任何事情.
-c
编译或汇编源文件,但是不作连接.编译器输出对应于源文件的目标文件.
缺省情况下, GCC通过用`.o'替换源文件名后缀`.c', `.i', `.s',等等,产生目标文件名.可以使用-o选项选择其他名字.
GCC忽略-c选项后面任何无法识别的输入文件(他们不需要编译或汇编).
-S
编译后即停止,不进行汇编.对于每个输入的非汇编语言文件,输出文件是汇编语言文件.
缺省情况下, GCC通过用`.o'替换源文件名后缀`.c', `.i',等等,产生 目标文件名.可以使用-o选项选择其他名字.
GCC忽略任何不需要编译的输入文件.
-E
预处理后即停止,不进行编译.预处理后的代码送往标准输出.
GCC忽略任何不需要预处理的输入文件.
-o file
指定输出文件为file.该选项不在乎GCC产生什么输出,无论是可执行文件,目标文件,汇编文件还是 预处理后的C代码.
由于只能指定一个输出文件,因此编译多个输入文件时,使用`-o'选项没有意义,除非输出一个可执行文件.
如果没有使用`-o'选项,默认的输出结果是:可执行文件为`a.out', `source.suffix '的目标文件是`source.o',汇编文件是 `source.s',而预处理后的C源代码送往标准输出.
-v
(在标准错误)显示执行编译阶段的命令.同时显示编译器驱动程序,预处理器,编译器的版本号.
-pipe
在编译过程的不同阶段间使用管道而非临时文件进行通信.这个选项在某些系统上无法工作,因为那些系统的 汇编器不能从管道读取数据. GNU的汇编器没有这个问题.
语言选项(LANGUAGE OPTIONS)
下列选项控制编译器能够接受的C "方言":
-ansi
支持符合ANSI标准的C程序.
这样就会关闭GNU C中某些不兼容ANSI C的特性,例如asm, inline和 typeof关键字,以及诸如unix和vax这些表明当前系统类型的预定义宏.同时开启 不受欢迎和极少使用的ANSI trigraph特性,以及禁止`$'成为标识符的一部分.
尽管使用了`-ansi'选项,下面这些可选的关键字, __asm__, __extension__, __inline__和__typeof__仍然有效.你当然不会把 他们用在ANSI C程序中,但可以把他们放在头文件里,因为编译包含这些头文件的程序时,可能会指定 `-ansi'选项.另外一些预定义宏,如__unix__和__vax__,无论有没有使用 `-ansi'选项,始终有效.
使用`-ansi'选项不会自动拒绝编译非ANSI程序,除非增加`-pedantic'选项作为 `-ansi'选项的补充.
使用`-ansi'选项的时候,预处理器会预定义一个__STRICT_ANSI__宏.有些头文件 关注此宏,以避免声明某些函数,或者避免定义某些宏,这些函数和宏不被ANSI标准调用;这样就不会干扰在其他地方 使用这些名字的程序了.
-fno-asm
不把asm, inline或typeof当作关键字,因此这些词可以用做标识符.用 __asm__, __inline__和__typeof__能够替代他们. `-ansi' 隐含声明了`-fno-asm'.
-fno-builtin
不接受不是两个下划线开头的内建函数(built-in function).目前受影响的函数有_exit, abort, abs, alloca, cos, exit, fabs, labs, memcmp, memcpy, sin, sqrt, strcmp, strcpy,和strlen.
`-ansi'选项能够阻止alloca和_exit成为内建函数.
-fhosted
按宿主环境编译;他隐含声明了`-fbuiltin'选项,而且警告不正确的main函数声明.
-ffreestanding
按独立环境编译;他隐含声明了`-fno-builtin'选项,而且对main函数没有特别要求.
(译注:宿主环境(hosted environment)下所有的标准库可用, main函数返回一个int值,典型例子是除了 内核以外几乎所有的程序.对应的独立环境(freestanding environment)不存在标准库,程序入口也不一定是 main,最明显的例子就是操作系统内核.详情参考gcc网站最近的资料)
-fno-strict-prototype
对于没有参数的函数声明,例如`int foo ();',按C风格处理---即不说明参数个数或类型. (仅针对C++).正常情况下,这样的函数foo在C++中意味着参数为空.
-trigraphs
支持ANSI C trigraphs. `-ansi'选项隐含声明了`-trigraphs'.
-traditional
试图支持传统C编译器的某些方面.详见GNU C手册,我们已经把细节清单从这里删除,这样当内容过时后,人们也不会 埋怨我们.
除了一件事:对于C++程序(不是C), `-traditional'选项带来一个附加效应,允许对 this赋值.他和`-fthis-is-variable'选项的效果一样.
-traditional-cpp
试图支持传统C预处理器的某些方面.特别是上面提到有关预处理器的内容,但是不包括 `-traditional'选项的其他效应.
-fdollars-in-identifiers
允许在标识符(identifier)中使用`$'字符(仅针对C++).你可以指定 `-fno-dollars-in-identifiers'选项显明禁止使用`$'符. (GNU C++在某些 目标系统缺省允许`$'符,但不是所有系统.)
-fenum-int-equiv
允许int类型到枚举类型(enumeration)的隐式转换(仅限于C++).正常情况下GNU C++允许从 enum到int的转换,反之则不行.
-fexternal-templates
为模板声明(template declaration)产生较小的代码(仅限于C++),方法是对于每个模板函数 (template function),只在定义他们的地方生成一个副本.想要成功使用这个选项,你必须在所有使用模板的 文件中,标记`#pragma implementation' (定义)或`#pragma interface' (声明).
当程序用`-fexternal-templates'编译时,模板实例(template instantiation) 全部是外部类型.你必须让需要的实例在实现文件中出现.可以通过typedef实现这一点,他引用所需的每个 实例.相对应的,如果编译时使用缺省选项`-fno-external-templates',所有模板实例明确的设为内置.
-fall-virtual
所有可能的成员函数默认为虚函数.所有的成员函数(除了构造子函数和new或delete 成员操作符)视为所在类的虚函数.
这不表明每次调用成员函数都将通过内部虚函数表.有些情况下,编译器能够判断出可以直接调用某个虚函数;这时就 直接调用.
-fcond-mismatch
允许条件表达式的第二和第三个参数的类型不匹配.这种表达式的值是void.
-fthis-is-variable
允许对this赋值(仅对C++).合并用户自定义的自由存储管理机制到C++后,使可赋值的 `this'显得不合时宜.因此,默认情况下,类成员函数内部对this赋值是无效操作.然而为了 向后兼容,你可以通过`-fthis-is-variable'选项使这种操作有效.
-funsigned-char
把char定义为无符号类型,如同unsigned char.
各种机器都有自己缺省的char类型.既可能是unsigned char也可能是signed char .
理想情况下,当依赖于数据的符号性时,一个可移植程序总是应该使用signed char或unsigned char.但是许多程序已经写成只用简单的char,并且期待这是有符号数(或者无符号数,具体情况取决于 编写程序的目标机器).这个选项,和它的反义选项,使那样的程序工作在对应的默认值上.
char的类型始终应该明确定义为signed char或unsigned char,即使 它表现的和其中之一完全一样.
-fsigned-char
把char定义为有符号类型,如同signed char.
这个选项等同于`-fno-unsigned-char',他是the negative form of `-funsigned-char'的相反选项.同样, `-fno-signed-char'等价于 `-funsigned-char'.
-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields
如果没有明确声明`signed'或`unsigned'修饰符,这些选项用来定义有符号位域 (bitfield)或无符号位域.缺省情况下,位域是有符号的,因为他们继承的基本整数类型,如int,是 有符号数.
然而,如果指定了`-traditional'选项,位域永远是无符号数.
-fwritable-strings
把字符串常量存储到可写数据段,而且不做特别对待.这是为了兼容一些老程序,他们假设字符串常量是可写的. `-traditional'选项也有相同效果.
篡改字符串常量是一个非常糟糕的想法; ``常量'就应该是常量.