浅析U-net

U-net是用来干嘛的

图像分割

那么图像分割是什么

简单的来讲就是给一张图像,检测是用框出框出物体,而图像分割分出一个物体的准确轮廓。也这样考虑,给出一张图像 I,这个问题就是求一个函数,从I映射到Mask。
浅析U-net_第1张图片
求这个函数有很多方法,但是第一次将深度学习结合起来的是这篇文章全卷积网络(FCN),利用深度学习求这个函数。在此之前深度学习一般用在分类和检测问题上。由于用到CNN,所以最后提取的特征的尺度是变小的。和我们要求的函数不一样,我们要求的函数是输入多大,输出有多大。为了让CNN提取出来的尺度能到原图大小,FCN网络利用上采样和反卷积到原图像大小。然后做像素级的分类。可以看图二,输入原图,经过VGG16网络,得到特征map,然后将特征map上采样回去。再将预测结果和ground truth每个像素一一对应分类,做像素级别分类。也就是说将分割问题变成分类问题,而分类问题正好是深度学习的强项。如果只将特征map直接上采样或者反卷积,明显会丢失很多信息。
浅析U-net_第2张图片
FCN采取解决方法是将pool4、pool3、和特征map融合起来,由于pool3、pool4、特征map大小尺寸是不一样的,所以融合应该前上采样到同一尺寸。这里的融合是拼接在一起,不是对应元素相加。FCN是深度学习在图像分割的开山之作,FCN优点是实现端到端分割等,缺点是分割结果细节不够好,可以看到图四,FCN8s是上面讲的pool4、pool3和特征map融合,FCN16s是pool4和特征map融合,FCN32s是只有特征map,得出结果都是细节不够好,具体可以看自行车。由于网络中只有卷积没有全连接,所以这个网络又叫全卷积网络。

U-net

浅析U-net_第3张图片
直入主题,U-Net的U形结构如图所示。网络是一个经典的全卷积网络(即网络中没有全连接操作)。网络的输入是一张 572572 的边缘经过镜像操作的图片(input image tile),关于“镜像操作“会在1.2节进行详细分析,网络的左侧(红色虚线)是由卷积和Max Pooling构成的一系列降采样操作,论文中将这一部分叫做压缩路径(contracting path)。压缩路径由4个block组成,每个block使用了3个有效卷积和1个Max Pooling降采样,每次降采样之后Feature Map的个数乘2,因此有了图中所示的Feature Map尺寸变化。最终得到了尺寸为 3232 的Feature Map。

网络的右侧部分(绿色虚线)在论文中叫做扩展路径(expansive path)。同样由4个block组成,每个block开始之前通过反卷积将Feature Map的尺寸乘2,同时将其个数减半(最后一层略有不同),然后和左侧对称的压缩路径的Feature Map合并,由于左侧压缩路径和右侧扩展路径的Feature Map的尺寸不一样,U-Net是通过将压缩路径的Feature Map裁剪到和扩展路径相同尺寸的Feature Map进行归一化的(即图1中左侧虚线部分)。扩展路径的卷积操作依旧使用的是有效卷积操作,最终得到的Feature Map的尺寸是 388*388 。由于该任务是一个二分类任务,所以网络有两个输出Feature Map。

如图中所示,网络的输入图片的尺寸是 572*572 ,而输出Feature Map的尺寸是 388\times388 ,这两个图像的大小是不同的,无法直接计算损失函数,那么U-Net是怎么操作的呢?

首先,数据集我们的原始图像的尺寸都是 512512 的。为了能更好的处理图像的边界像素,U-Net使用了镜像操作(Overlay-tile Strategy)来解决该问题。镜像操作即是给输入图像加入一个对称的边(图2),那么边的宽度是多少呢?一个比较好的策略是通过感受野确定。因为有效卷积是会降低Feature Map分辨率的,但是我们希望 512512 的图像的边界点能够保留到最后一层Feature Map。所以我们需要通过加边的操作增加图像的分辨率,增加的尺寸即是感受野的大小,也就是说每条边界增加感受野的一半作为镜像边。

浅析U-net_第4张图片
根据上图中所示的压缩路径的网络架构,我们可以计算其感受野:

rf= (((0 *2 +2 +2)*2 +2 +2)*2 +2 +2)*2 +2 +2 = 60

这也就是为什么U-Net的输入数据是 572*572 的。572的卷积的另外一个好处是每次降采样操作的Feature Map的尺寸都是偶数,这个值也是和网络结构密切相关的。

在生物图像分割中,最为突出了两个挑战是:可获得的训练数据很少;对于同一类的连接的目标分割。本文解决第一个问题的方法是通过数据扩大(data augmentation)。他们通过使用在粗糙的3*3点阵上的随机取代向量来生成平缓的变形。解决第二个问题是通过使用损耗权重(weighted loss),这是基于相邻细胞的分界的背景标签在损耗函数中有很高的权值。如图3。

浅析U-net_第5张图片
总结

U-Net是比较早的使用多尺度特征进行语义分割任务的算法之一,其U形结构也启发了后面很多算法。但其也有几个缺点:

有效卷积增加了模型设计的难度和普适性;目前很多算法直接采用了same卷积,这样也可以免去Feature Map合并之前的裁边操作。

你可能感兴趣的:(深度学习)