- 番茄西红柿叶子病害分类数据集12882张11类别
futureflsl
数据集分类数据挖掘人工智能
数据集类型:图像分类用,不可用于目标检测无标注文件数据集格式:仅仅包含jpg图片,每个类别文件夹下面存放着对应图片图片数量(jpg文件个数):12882分类类别数:11类别名称:["Bacterial_Spot_Bacteria","Early_Blight_Fungus","Healthy","Late_Blight_Water_Mold","Leaf_Mold_Fungus","Powdery
- 遥感影像的切片处理
sand&wich
计算机视觉python图像处理
在遥感影像分析中,经常需要将大尺寸的影像切分成小片段,以便于进行详细的分析和处理。这种方法特别适用于机器学习和图像处理任务,如对象检测、图像分类等。以下是如何使用Python和OpenCV库来实现这一过程,同时确保每个影像片段保留正确的地理信息。准备环境首先,确保安装了必要的Python库,包括numpy、opencv-python和xml.etree.ElementTree。这些库将用于图像处理
- Python(PyTorch)和MATLAB及Rust和C++结构相似度指数测量导图
亚图跨际
Python交叉知识算法量化检查图像压缩质量低分辨率多光谱峰值信噪比端到端优化图像压缩手术机器人三维实景实时可微分渲染重建三维可视化
要点量化检查图像压缩质量低分辨率多光谱和高分辨率图像实现超分辨率分析图像质量图像索引/多尺度结构相似度指数和光谱角映射器及视觉信息保真度多种指标峰值信噪比和结构相似度指数测量结构相似性图像分类PNG和JPEG图像相似性近似算法图像压缩,视频压缩、端到端优化图像压缩、神经图像压缩、GPU变速图像压缩手术机器人深度估计算法重建三维可视化推理图像超分辨率算法模型三维实景实时可微分渲染算法MATLAB结构
- CV、NLP、数据控掘推荐、量化
海的那边-
AI算法自然语言处理人工智能
下面是对CV(计算机视觉)、NLP(自然语言处理)、数据挖掘推荐和量化的简要概述及其应用领域的介绍:1.CV(计算机视觉,ComputerVision)定义:计算机视觉是一门让计算机能够从图像或视频中提取有用信息,并做出决策的学科。它通过模拟人类的视觉系统来识别、处理和理解视觉信息。主要任务:图像分类:识别图像中的物体并分类,比如猫、狗、车等。目标检测:在图像或视频中定位并识别多个对象,如人脸检测
- YOLOv8数据增强
热心小张
研究生yolov8
1.找到augment.py(ultralytics/data/augment.py),修改对应内容#TransformsT=[A.Blur(p=0.01),A.MedianBlur(p=0.01),A.ToGray(p=0.01),A.CLAHE(p=0.01),A.RandomBrightnessContrast(p=0.0),A.RandomGamma(p=0.0),A.ImageCompr
- 计算机视觉中的数据增强方法总结
CV技术指南(公众号)
CV技术总结计算机视觉深度学习卷积神经网络
前言:在计算机视觉方向,数据增强的本质是人为地引入人视觉上的先验知识,可以很好地提升模型的性能,目前基本成为模型的标配。最近几年逐渐出了很多新的数据增强方法,在本文将对数据增强做一个总结。本文介绍了数据增强的作用,数据增强的分类,数据增强的常用方法,一些特殊的方法,如Cutout,RandomErasing,Mixup,Hide-and-Seek,CutMix,GridMask,FenceMask
- 基于Pytorch框架的CIFAR-10图像分类任务(附带完整代码)
难得北窗高卧
pytorch人工智能python深度学习
本文主要实现在pytorch框架下,训练CIFAR数据集,通过观察训练和验证的误差、准确率图像来进一步改善。保存最好的模型。测试集打印整体准确率和每一类别的准确率,并生成混淆矩阵,将其中每一个错误的图片并保存下来。语言:python实现方式:pytorch框架,CPU关键词:CIFAR-10数据集、Dataset和Dataloader、SummaryWriter画图、网络模型搭建、混淆矩阵、统计所
- 验证resneXt,densenet,mobilenet和SENet的特色结构
dfj77477
人工智能python
简介图像分类对网络结构的要求,一个是精度,另一个是速度。这两个需求推动了网络结构的发展。resneXt:分组卷积,降低了网络参数个数。densenet:密集的跳连接。mobilenet:标准卷积分解成深度卷积和逐点卷积,即深度分离卷积。SENet:注意力机制。简单起见,使用了[1]的代码,注释掉layer4,作为基本框架resnet14。然后改变局部结构,验证分类效果。实验结果GPU:gtx107
- 第3篇:LangChain的架构总览与设计理念
Gemini技术窝
langchain架构大数据人工智能AIGCnlp
LangChain库是一个专为自然语言处理(NLP)设计的强大工具包,致力于简化复杂语言模型链的构建和执行。在本文中,我们将深入解析LangChain库的架构,详细列出其核心组件、设计理念及其在不同场景中的应用,并讨论其优缺点。文章目录1.LangChain库简介2.核心组件2.1数据输入模块作用2.2数据预处理模块作用2.3数据增强模块作用2.4数据加载与批处理模块作用2.5模型训练模块作用2.
- pytorh基础知识和函数的学习:torchvision.transforms()
深蓝海拓
机器视觉和人工智能学习学习pytorch
transforms是PyTorch的torchvision库中用于图像处理的一个模块。它提供了一组工具,用于在图像数据集上进行常见的预处理和数据增强操作,以便更好地训练深度学习模型。以下是一些常用的torchvision.transforms转换:基础图像转换:transforms.ToTensor():将PIL图像或NumPy数组转换为PyTorch的张量,并将像素值范围从[0,255]缩放到
- 深度学习速通系列:鲁棒性和稳定性
Ven%
深度学习速通系列深度学习自然语言处理人工智能pythonnlp
在机器学习中,鲁棒性和稳定性是评估模型性能的两个关键指标,它们对于确保模型在实际应用中的可靠性至关重要。鲁棒性(Robustness)定义:鲁棒性指的是模型对于输入数据的扰动、噪声、异常值或对抗性攻击的抵抗能力。一个鲁棒的模型能够在面对这些不利因素时保持其性能。提高鲁棒性的方法:数据增强:通过对训练数据进行变换(如旋转、缩放、裁剪等),使模型能够更好地泛化到未见过的数据。对抗训练:在训练过程中引入
- 基于深度学习的对抗样本生成与防御
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的对抗样本生成与防御是当前人工智能安全领域的关键研究方向。对抗样本是通过对输入数据进行微小扰动而产生的,能够导致深度学习模型做出错误预测。这对图像分类、自然语言处理、语音识别等应用构成了严重威胁,因此相应的防御措施也在不断发展。1.对抗样本生成对抗样本生成的方法主要有两大类:基于梯度的方法和基于优化的方法。1.1基于梯度的方法这些方法利用模型的梯度信息,通过细微的扰动来生成对抗样本,迫
- 6. 深度学习中的正则化技术:防止过拟合
Network_Engineer
机器学习深度学习人工智能
引言过拟合是深度学习模型在训练过程中常遇到的挑战。过拟合会导致模型在训练数据上表现良好,但在新数据上表现不佳。为了防止过拟合,研究者们提出了多种正则化技术,如L1/L2正则化、Dropout、数据增强等。这些技术通过约束模型的复杂度或增加数据的多样性,有效提高了模型的泛化能力。本篇博文将深入探讨这些正则化技术的原理、应用及其在实际深度学习任务中的效果。1.过拟合的原因与影响过拟合通常发生在模型的复
- 【Python】成功解决TypeError: list indices must be integers or slices, not str
高斯小哥
BUG解决方案合集pythonlist新手入门学习debug
【Python】成功解决TypeError:listindicesmustbeintegersorslices,notstr欢迎进入我的个人主页,我是高斯小哥!博主档案:广东某985本硕,SCI顶刊一作,深耕深度学习多年,熟练掌握PyTorch框架。技术专长:擅长处理各类深度学习任务,包括但不限于图像分类、图像重构(去雾\去模糊\修复)、目标检测、图像分割、人脸识别、多标签分类、重识别(行人\车辆
- Transformer+目标检测,这一篇入门就够了
BIT可达鸭
▶深度学习-计算机视觉transformer深度学习目标检测计算机视觉自然语言处理
VisionTransformerforObjectDetection本文作者:Encoder-Decoder简介:Encoder-Decoder的缺陷:Attention机制:Self-Attention机制:Multi-HeadAttention:Transformer结构:图像分类之ViT:图像分类之PyramidViT:目标检测之DETR:目标检测之DeformableDETR:本文作者:
- 经典网络训练图像分类模型一
三十度角阳光的问候
分类数据挖掘人工智能
目录数据预处理部分:网络模块设置:网络模型保存与测试数据读取与预处理操作制作好数据源:读取标签对应的实际名字加载models中提供的模型,并且直接用训练的好权重当做初始化参数模型参数更新把模型输出层改成自己的设置哪些层需要训练优化器设置数据预处理部分:-数据增强:torchvision中transforms模块自带功能,比较实用-数据预处理:torchvision中transforms也帮我们实现
- 训练过程训练集的准确率都低于验证集和测试集的准确率可能的原因
Wils0nEdwards
python人工智能深度学习
每一个epoch训练集的准确率都低于验证集和测试集的准确率,这种现象不太常见,可能有以下几个原因:1.数据增强过强如果你在训练集上使用了较强的数据增强(如随机翻转、ColorJitter等),而验证集和测试集仅进行了基础的预处理。这会导致训练集的样本更具挑战性,模型在训练集上的表现不如在验证集和测试集上的表现。2.训练和验证集分布差异训练集、验证集和测试集的分布可能存在差异。如果训练集包含更多的噪
- 识别实验笔记和经验总结
Wils0nEdwards
笔记
1.跑对比实验之前,首先保证对比的公平性和可靠性!在进行图像分类模型对比实验时,为了确保对比的公平性和可靠性,以下几个因素需要重点考虑:数据集的一致性:数据集分割:确保训练集、验证集和测试集的划分是一致的。各模型使用相同的训练数据和测试数据。数据集大小:确保数据集的样本数量充足且具有代表性,避免数据集过小导致结果不具备普遍性。数据预处理:图像预处理方法:所有模型使用相同的预处理方法(如归一化、裁剪
- caffe/PyTorch/TensorFlow 在Jupyter Notebook GPU中运用
俊俏的萌妹纸
caffe人工智能深度学习
在JupyterNotebook中使用Caffe框架并利用GPU加速,可以实现多种效果和目的,主要集中在深度学习领域。以下是一些主要的应用场景:快速训练模型:GPU加速可以显著提高模型训练的速度。对于大型数据集和复杂的神经网络结构,使用GPU可以大大减少训练时间。实时数据增强:在训练过程中,可以实时地对输入数据进行变换和增强,以提高模型的泛化能力。GPU加速使得这些操作更加高效。大规模数据处理:深
- 4. 生成对抗网络(GAN):生成模型的崛起
Network_Engineer
机器学习python深度学习机器学习算法人工智能
引言生成对抗网络(GAN)是近年来深度学习领域中最具创新性和影响力的模型之一。GAN通过生成器和判别器的对抗性训练,能够生成逼真的图像、音频、文本等数据,广泛应用于图像生成、数据增强、风格迁移等任务中。本篇博文将深入解析GAN的基本原理、训练过程,以及其在各类生成任务中的应用。1.GAN的基本架构生成对抗网络(GAN)由两个核心部分组成:生成器(Generator)和判别器(Discriminat
- 深度学习100问44:如何避免模型出现过拟合现象
不断持续学习ing
人工智能自然语言处理机器学习
嘿,想让你的模型不出现过拟合现象?来看看这些妙招吧!一、增加数据量这就好比让学生多做各种不同的练习题。数据多了,模型就能学到更普遍的规律,而不是只记住那一点点数据里的小细节。你可以去收集更多真实的数据,或者用数据增强的办法。就像在图像识别里,把图片转一转、翻一翻、剪一剪,这样数据就变得更多样啦。二、简化模型要是模型太复杂,那就像盖了一座超级华丽的城堡,容易记住一些不该记的东西。那就把模型弄得简单点
- PyTorch库学习之torch.repeat_interleave函数
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch库学习之torch.repeat_interleave函数一、简介torch.repeat_interleave是PyTorch库中的一个函数,它用于重复张量中的元素。这个函数可以沿着指定的维度重复张量中的每个元素,返回一个新的张量。当不指定维度时,会将输入张量展平,并重复每个元素。这个函数在处理序列数据或生成数据增强样本时非常有用。二、语法和参数语法:torch.repeat_in
- [opencv]DNN图像分类
FL1623863129
opencvopencvdnn分类
OpenCV是一个计算机视觉开源库,提供了处理图像和视频的能力。OpenCV的影响力非常大,有超过47000的社区用户,以及超过1400万次的下载量。其应用领域横跨图像处理、交互式艺术、视频监督、地图拼接和高级机器人等。作为一个有十几年历史的开源项目,OpenCV拥有广大的用户群体和开发者群体。在数字的世界中,一幅图像由多个点(像素)组成。图像处理就是对其中一个像素或者一个区域内的像素(块)进行处
- 快速使用transformers的pipeline实现各种深度学习任务
E寻数据
huggingface计算机视觉nlp深度学习人工智能pythonpipelinetransformers
目录引言安装情感分析文本生成文本摘要图片分类实例分割目标检测音频分类自动语音识别视觉问答文档问题回答图文描述引言在这篇中文博客中,我们将深入探讨使用transformers库中的pipeline()函数,它为预训练模型提供了一个简单且快速的推理方法。pipeline()函数支持多种任务,包括文本分类、文本生成、摘要生成、图像分类、图像分割、对象检测、音频分类、自动语音识别、视觉问题回答、文档问题回
- 第T10周:数据增强
OreoCC
深度学习人工智能tensorflow2
>-**本文为[365天深度学习训练营]中的学习记录博客**>-**原作者:[K同学啊]**第10周:数据增强难度:夯实基础⭐⭐语言:Python3、TensorFlow2要求:学会在代码中使用数据增强手段来提高acc请探索更多的数据增强手段并记录在本教程中,你将学会如何进行数据增强,并通过数据增强用少量数据达到非常非常棒的识别准确率。我将展示两种数据增强方式,以及如何自定义数据增强方式并将其放到
- Datawhale AI夏令营-task03
ghost_him
人工智能
DatawhaleAI夏令营-task03笔记来源:DatawhaleAI夏令营数据增强基础数据增强是一种在机器学习和深度学习领域常用的技术,尤其是在处理图像和视频数据时。**数据增强的目的是通过人工方式增加训练数据的多样性,从而提高模型的泛化能力,使其能够在未见过的数据上表现得更好。**数据增强涉及对原始数据进行一系列的变换操作,生成新的训练样本。这些变换模拟了真实世界中的变化,对于图像而言,数
- 阿尔兹海默症-图像分类数据集
数据集_深度学习
分类数据挖掘人工智能python机器学习算法
阿尔兹海默症-图像分类数据集数据集:链接:https://pan.baidu.com/s/1gSUT74XrnHmg2Z11oZNd6A?pwd=wphh提取码:wphh数据集信息介绍:文件夹健康中的图片数量:8000文件夹早期轻度认知障碍中的图片数量:10000文件夹阿尔兹海默症中的图片数量:8000所有子文件夹中的图片总数量:26000阿尔兹海默症-图像分类数据集摘要阿尔兹海默症(Alzhei
- 基于深度学习的自适应架构
SEU-WYL
深度学习dnn深度学习架构人工智能
基于深度学习的自适应架构是一种能够动态调整自身结构和参数的神经网络体系,以更好地适应不同的任务和环境需求。这类架构旨在提高模型的灵活性、效率和泛化能力,特别是在面对资源受限或任务多样化的情况下。以下是对该主题的详细介绍:1.背景与动机任务多样性:在现实世界中,模型可能需要处理各种不同的任务,如图像分类、物体检测、自然语言处理等。传统的固定架构模型往往难以在所有任务上都表现出色。资源受限环境:在边缘
- [数据集][图像分类]河道污染分类数据集1923张4类别
FL1623863129
数据集分类数据挖掘人工智能
数据集类型:图像分类用,不可用于目标检测无标注文件数据集格式:仅仅包含jpg图片,每个类别文件夹下面存放着对应图片图片数量(jpg文件个数):1922分类类别数:4类别名称:["lianghao","qingwei","yanzhong","zhongdu"]每个类别图片数:lianghao图片数:435qingwei图片数:423yanzhong图片数:577zhongdu图片数:487重要说明
- 基于PIL实现亮度、噪声、随机黑块数据增强
小陈phd
pythonnumpy人工智能
importosimportshutilfromPILimportImage,ImageEnhanceimportnumpyasnpimportrandomfromtqdmimporttqdm#ColorJitteringfunctiondefapply_color_jitter(image,brightness=0.5,contrast=0.5,saturation=0.5):"""Applyc
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs