目标检测算法-Light Head R-CNN

一般来说网络的head都设计很重"重",且head部分有一些层,计算量大弄且耗时,故导致检测速度很慢,Light-Head R-CNN则是主要通过对head部分的修改减少了较多计算量。

Light-Head R-CNN的网络结构:

目标检测算法-Light Head R-CNN_第1张图片

 

Light-Head R-CNN网络结构跟R-CNN的网络结构和R-FCN的网络结构差不多,针对R-FCN的score map维度过大的问题,这里就用10代替了class,也就是说score map维度变成了10×p×p(p=7)=490,因此降低了PSROI Pooling和FC层的计算量,使用large separable Convolution 代替1×1Convolution,这里借鉴了Inception V3的思想。

目标检测算法-Light Head R-CNN_第2张图片

将k×k的卷积转化为1×k和k×1,同时采用上图左右两边的结构,最后通过padding融合feature map,得到size不变的特征图将490维特征图和ROI作为PSROI的输入则得到10维p×p的特征图,如果作为ROI Pooling的输入则得到490维的特征图,因为class已经改为1-,所以没办法直接进行分类,所以接了个FC层做channel变换,在进行分类和回归。

你可能感兴趣的:(目标检测算法-Light Head R-CNN)