- 论文笔记 <交通灯><多智能体>CoLight管理交通灯
青椒大仙KI11
论文阅读
今天看的是论文Colight:学习网络级合作进行交通信号控制论文提出的CoLight模型是一种基于强化学习和图注意力网络的交通信号灯控制方法,旨在解决城市道路网络中的交通信号的写作问题,提升车辆通行效率。问题定义为:将交通信号控制问题建模为马尔可夫博弈,每个路口由一个智能体控制,智能体通过观察部分系统状态(当前相位和各车道车辆数),选择动作(下一时间段的相位),目标是最小化路口周围车道的平均队列长
- 《基于超声的深度学习模型用于降低BI-RADS 4A乳腺病变的恶性率》论文笔记 MobileNet
往事随风、、
论文笔记机器学习深度学习论文阅读人工智能机器学习健康医疗
《APPLICATIONOFDEEPLEARNINGTOREDUCETHERATEOFMALIGNANCYAMONGBI-RADS4ABREASTLESIONSBASEDONULTRASONOGRAPHY》《基于超声的深度学习模型用于降低BI-RADS4A乳腺病变的恶性率》原文地址:链接文章目录摘要简介方法患者图像获取与处理深度学习模型统计分析结果讨论结论摘要本研究旨在开发一个基于超声(US)图像
- 论文笔记--Language Models are Unsupervised Multitask Learners
Isawany
论文阅读论文阅读语言模型transformerchatgpt自然语言处理
论文笔记GPT-2--LanguageModelsareUnsupervisedMultitaskLearners1.文章简介2.文章导读2.1概括2.2文章重点技术2.2.1数据集WebText2.2.2分词方法3.GPT-1&GPT-24.文章亮点5.原文传送门6.References1.文章简介标题:LanguageModelsareUnsupervisedMultitaskLearners
- You Only Look Once Unified, Real-Time Object Detection论文笔记
__Lo__
目标检测论文阅读深度学习
文章结构统一检测框架(UnifiledDetection)核心思想YOLO将目标检测视为一个端到端的回归问题,输入的图像经过SingleForwardPass,直接输出物体的信息(边界框的位置、边界框的置信度、类别概率);优势在于速度快,全局理解上下文,这里全局理解上下文的意思是识别物体和背景的关系,减少误检。网络设计网格划分(GridDivision)将图像划分为一个S×S的网格,文中S=7;共
- 【论文笔记】UnifiedQA:新SOTA,生成模型一统问答任务
iLuz
深度学习自然语言处理
目录引言模型介绍1.输入格式2.实验结果总结引言问答任务有多种形式,常见的有抽取式问答(EX)、摘要式问答(AB)、多选题式问答(MC)、判断式问答(YN)。一般的解决方案是针对不同形式的问答任务设计不同的模型。例如,抽取式问答、多选题式问答、判断式问答可以转化为分类任务,摘要式问答可以转换为生成任务。尽管任务形式不同,但模型所需的语义理解和推理能力是共通的,或许不需要format-special
- [论文笔记] [2008] [ICML] Extracting and Composing Robust Features with Denoising Autoencoders
Alexzhuan
DL神经网络机器学习
在06年以前,想要去训练一个多层的神经网络是比较困难的,主要的问题是超过两层的模型,当时没有好的策略或方法使模型优化的很好,得不到预期的效果。在06年,Hinton提出的stackedautoencoders改变了当时的情况,那时候的研究者就开始关注各种自编码模型以及相应的堆叠模型。这篇的作者提出的DAE(DenoisingAutoencoders)就是当时蛮有影响力的工作。那个时候多层模型效果得
- 【论文笔记】SecAlign: Defending Against Prompt Injection with Preference Optimization
AustinCyy
论文笔记论文阅读
论文信息论文标题:SecAlign:DefendingAgainstPromptInjectionwithPreferenceOptimization-CCS25论文作者:SizheChen-UCBerkeley;Meta,FAIR论文链接:https://arxiv.org/abs/2410.05451代码链接:https://github.com/facebookresearch/SecAli
- CLIP论文笔记:Learning Transferable Visual Models From Natural Language Supervision
Q同学的nlp笔记
论文阅读语言模型人工智能nlp自然语言处理
导语会议:ICML2021链接:https://proceedings.mlr.press/v139/radford21a/radford21a.pdf当前的计算机视觉系统通常只能识别预先设定的对象类别,这限制了它们的广泛应用。为了突破这一局限,本文探索了一种新的学习方法,即直接从图像相关的原始文本中学习。本文开发了一种简单的预训练任务,通过预测图片与其对应标题的匹配关系,从而有效地从一个包含4亿
- 论文笔记:Large Language Models are Zero-Shot Next LocationPredictors
UQI-LIUWJ
论文笔记论文阅读语言模型人工智能
1intro下一个地点预测(NL)包括基于个体历史访问位置来预测其未来的位置。NL对于应对各种社会挑战至关重要,包括交通管理和优化、疾病传播控制以及灾害响应管理NL问题已经通过使用马尔可夫模型、基于模式的方法以及最近的深度学习(DL)技术(进行了处理。然而,这些方法并不具备地理转移能力因此,一旦这些模型在某个地理区域训练完毕,如果部署到不同的地理区域,它们将面临严重的性能下降尽管已经做出努力改善地
- 论文笔记:LSTPrompt: Large Language Models as Zero-Shot Time Series Forecastersby Long-Short-Term Prompt
UQI-LIUWJ
论文笔记论文阅读语言模型prompt
202402arxiv1intro1.1大模型+时间序列预测一般有两种类型的方法使用海量时间序列数据重新训练一个时间序列领域的大模型论文笔记:TimeGPT-1_timegpt论文-CSDN博客直接利用现有的大模型,设计prompt,将时间序列数据转换成大模型理解的文本,实现时间序列预测代价小+有成熟的可供使用的大模型1.2本文思路之前的方法大多集中在如何将时间序列数据转换成文本上将时间序列的数字
- 【论文笔记】ResNet论文的全面解析
浩瀚之水_csdn
#论文阅读笔记人工智能
论文:DeepResidualLearningforImageRecognition发表时间:2015发表作者:(MicrosoftResearch)He-Kaiming,Ren-Shaoqing,Sun-Jian论文链接:论文链接一、ResNet论文基本信息论文标题与发表信息论文标题:《DeepResidualLearningforImageRecognition》发表时间:2015年,并在20
- 论文笔记:TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents
CvBeginner
论文笔记轨迹预测计算机视觉
论文笔记:TrafficPredict:TrajectoryPredictionforHeterogeneousTraffic-Agents摘要这是百度在AAAI2019发布的一篇文章。这篇文章提出了一种基于4D-graph的方法实现复杂场景下的轨迹预测,研究对象包含行人、机动车和自行车。实现方法本文提出了一个基于LSTM的算法,名为TrafficPredict。构建了一个4DGraph,输入是轨
- 论文笔记:MobileNetV2: Inverted Residuals and Linear Bottlenecks
菜鸡信息技术
DeepLearning
MobileNetV2:InvertedResidualsandLinearBottlenecksMobileNetV2是MobileNetV1的改进版,Invertedresidual是个非常精妙的设计!MobileNetV1引入depthwiseseparableconvolution代替standardconvolution,减少运算量。MobileNetV1的结构其实非常简单,是类似于VG
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC深度学习人工智能计算机视觉机器学习transformer论文阅读
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- Meta的AIGC视频生成模型——Emu Video
好评笔记
AIGC深度学习人工智能机器学习transformer校招面试八股
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Meta的视频生成模型EmuVideo,作为Meta发布的第二款视频生成模型,在视频生成领域发挥关键作用。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言相关工作文本到图像(T2I)扩散模型视频生成/预测文本到视频(T2V)生成分解生成方法预备知识EmuVideo生成步骤图
- [论文笔记] 超详细解读DeepSeek v3全论文技术报告
心心喵
论文笔记论文阅读
DeepSeek-V3是一个强大的专家混合(Mixture-of-Experts,MoE)语言模型,总共671B参数,每个token激活37B参数(可以理解为有多个专家,但每个token只会选择一部分专家进行推理,所以一个token的预测,只会用到37B参数),DeepSeek-V3使用了多头潜在注意力(
- [论文笔记] pai-megatron qwen1.5报错
心心喵
论文笔记python
Qwen1.5-0.5b-chat使用example中fintune.py报错·Issue#77·QwenLM/Qwen1.5·GitHub解决方案:transformers升级到4.37.0pipinstallsetuptools==65.5.1pipinstalltransformers==4.37.0
- 基于不确定性感知学习的单图像自监督3D人体网格重建 (论文笔记与思考)
Gamma and Beta
读博笔记算法笔记学习3d论文阅读
文章目录论文解决的问题提出的算法以及启发点论文解决的问题首先这是Self-Supervised3DHumanmeshrecoveryfromasingleimagewithuncertainty-awarelearning(AAAI2024)的论文笔记。该文中主要提出了一个自监督的framework用于人体的姿态恢复。主要是解决了现有的方法对大型数据集的依赖。提出的算法以及启发点论文总体的框架其实
- LLM论文笔记 28: Universal length generalization with Turing Programs
Zhouqi_Hua
大模型论文阅读论文阅读语言模型自然语言处理笔记人工智能
Arxiv日期:2024.10.4机构:HarvardUniversity关键词图灵机CoT长度泛化核心结论TuringPrograms的提出提出TuringPrograms,一种基于图灵机计算步骤的通用CoT策略。通过将算法任务分解为逐步的“磁带更新”(类似图灵机的读写操作),允许模型通过简单的文本复制与局部修改完成复杂计算通用性:适用于任何算法任务(加法、乘法、SGD),不依赖任务特定的数据格
- LLM论文笔记 27: Looped Transformers for Length Generalization
Zhouqi_Hua
大模型论文阅读论文阅读语言模型人工智能论文笔记笔记
Arxiv日期:2024.9.25关键词长度泛化transformer结构优化核心结论1.RASP-L限制transformer无法处理包含循环的任务的长度泛化2.LoopTransformer显著提升了长度泛化能力InputInjection显著提升了模型的长度泛化性能,尤其在二进制加法等复杂任务上效果显著在推理中,通过输出置信度判断迭代停止点的策略能够实现接近最佳的性能主要方法Transfor
- Fast-BEV:A Fast and Strong Bird’s-Eye View Perception Baseline——论文笔记
m_buddy
BEVPerception论文阅读人工智能深度学习
参考代码:Fast-BEV一稿多投的另一篇:Fast-BEV:TowardsReal-timeOn-vehicleBird’s-EyeViewPerception1.概述介绍:这篇文章提供了一种可实际部署的BEV感知方案,能够在当今车端主流计算单元上(NvidiaOrin)实现不错的帧率。从camera到BEV的转换思想来自于M2BEV,但是对这个转换方法中使用查找表和映射方法改进,使得整体视角转
- 读论文笔记-Flamingo:少样本视觉语言模型
joseanne_josie
论文阅读语言模型人工智能
读论文笔记-Flamingo:少样本视觉语言模型Plomblems本文拟解决多模态机器学习中,如何将训练好的模型快速适应到少量标注数据的新任务中的问题。Motivations已有的VLM虽然能在zero-shot的场景下适应于新任务,但他们只解决了有限的使用情况(如CLIP只解决了图片分类),由于主要缺乏生成语言的能力其不能应用于开放性任务。其他的一些方法虽然研究了基于视觉的语言生成但在数据量少的
- 论文笔记-基于多层感知器(MLP)的多变量桥式起重机自适应安全制动与距离预测
sagima_sdu
论文阅读
《IETCyber-SystemsandRobotics》出版山东大学TenglongZhang和GuoliangLiu团队的研究成果,文章题为“AdaptiveSafeBrakingandDistancePredictionforOverheadCranesWithMultivariationUsingMLP”。摘要桥式起重机的紧急制动及其制动距离预测是其安全运行中的关键难题。本文采用多层感知器
- 论文笔记:How Can Large Language Models Understand Spatial-Temporal Data?
UQI-LIUWJ
论文笔记论文阅读语言模型人工智能
arxiv2024011introLLM在NLP和CV领域表现出色,但将它们应用于时空预测任务仍然面临挑战,主要问题包括:数据不匹配传统的LLMs设计用于处理序列文本数据,而时空数据具有复杂的结构和动态性,这两者之间存在显著差异模型设计限制现有的时空预测方法通常需要为特定领域设计专门的模型,这限制了模型的通用性和适应性数据稀缺和泛化能力传统的时空预测方法在面对数据稀缺或稀疏的情况下表现不佳,且泛化
- SentiGAN: Generating Sentimental Texts via Mixture Adversarial Networks论文笔记
catbird233
深度生成模型笔记
另一篇很好的解释:https://www.itcodemonkey.com/article/6378.html摘要在自然语言生成领域,不同情感标签的生成越来越受到人们的关注。近年来,生成性对抗网(gan)在文本生成方面取得了良好的效果。然而,gan产生的文本通常存在质量差、缺乏多样性和模式崩溃的问题。本文提出了一个新的框架--sentyan,它有多个生成器和一个多类判别器,以解决上述问题。在我们的
- [论文笔记]Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Com
愤怒的可乐
自然语言处理论文翻译/笔记论文阅读语言模型人工智能
引言今天带来论文Adaptive-RAG:LearningtoAdaptRetrieval-AugmentedLargeLanguageModelsthroughQuestionComplexity的笔记。检索增强的大型语言模型(LLMs)已经成为一个有希望的方法,将外部知识库的非参数化知识整合到LLMs中,从而提高了几个任务的响应准确性。但并不是所有用户请求都只属于简单或复杂类别中的一个。在这项
- 论文笔记--Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Isawany
论文阅读论文阅读bert语言模型transformernlp
论文笔记--Sentence-BERT:SentenceEmbeddingsusingSiameseBERT-Networks1.文章简介2.文章导读2.1概括2.2文章重点技术2.2.1池化层2.2.2目标函数3.文章亮点和不足4.原文传送门5.References1.文章简介标题:Sentence-BERT:SentenceEmbeddingsusingSiameseBERT-Networks
- 论文笔记《TAG-DTA:Binding-region-guidedstrategytopredictdrug-target affinity using transformers》
I_dyllic
深度学习论文阅读python深度学习
TAG-DTA:结合区域引导策略,使用transformer预测药物-靶标亲和力对目标特异性化合物选择性的适当评估在药物发现环境中至关重要,促进药物-靶标相互作用(DTI)的识别和潜在线索的发现。考虑到这一点,准确预测无偏药物-靶标结合亲和力(DTA)指标对于理解绑定过程至关重要。然而,大多数硅计算方法忽略了蛋白质组学、化学和药理学空间之间的相互依赖关系以及模型构建过程中的可解释性。此外,这些方法
- [论文笔记] Deepseek技术报告解读: MLA&MTP
心心喵
论文笔记论文阅读
1.RMSNorm归一化层classRMSNorm(nn.Module):def__init__(self,dim:int,eps:float=1e-8):super().__init__()self.eps=epsself.weight=nn.Parameter(torch.ones(dim))#可学习的缩放参数def_norm(self,x:torch.Tensor):returnx*torc
- 《DFC-Net:Deep Flow-Guided Video Inpainting》论文笔记
m_buddy
Video&ImageInpaintingDFC-Net
参考代码:DFC-Net1.概述导读:这篇文章分析的是视频领域的inpainting,这篇文章充分使用了视频内在的空间(指一帧图像中的内容)与时序(不同视频帧)信息,以及视频帧之间生成的光流信息实现了一个保持视频内在连续的修补方法,文章将其称为DFC-Net(DeepFlowCompletionnetwork)。该方法首先通过前后视频帧之间的光流关系推断缺失区域的合成光流估计信息(估计光流信息比直
- windows下源码安装golang
616050468
golang安装golang环境windows
系统: 64位win7, 开发环境:sublime text 2, go版本: 1.4.1
1. 安装前准备(gcc, gdb, git)
golang在64位系
- redis批量删除带空格的key
bylijinnan
redis
redis批量删除的通常做法:
redis-cli keys "blacklist*" | xargs redis-cli del
上面的命令在key的前后没有空格时是可以的,但有空格就不行了:
$redis-cli keys "blacklist*"
1) "blacklist:12:
[email protected]
- oracle正则表达式的用法
0624chenhong
oracle正则表达式
方括号表达示
方括号表达式
描述
[[:alnum:]]
字母和数字混合的字符
[[:alpha:]]
字母字符
[[:cntrl:]]
控制字符
[[:digit:]]
数字字符
[[:graph:]]
图像字符
[[:lower:]]
小写字母字符
[[:print:]]
打印字符
[[:punct:]]
标点符号字符
[[:space:]]
- 2048源码(核心算法有,缺少几个anctionbar,以后补上)
不懂事的小屁孩
2048
2048游戏基本上有四部分组成,
1:主activity,包含游戏块的16个方格,上面统计分数的模块
2:底下的gridview,监听上下左右的滑动,进行事件处理,
3:每一个卡片,里面的内容很简单,只有一个text,记录显示的数字
4:Actionbar,是游戏用重新开始,设置等功能(这个在底下可以下载的代码里面还没有实现)
写代码的流程
1:设计游戏的布局,基本是两块,上面是分
- jquery内部链式调用机理
换个号韩国红果果
JavaScriptjquery
只需要在调用该对象合适(比如下列的setStyles)的方法后让该方法返回该对象(通过this 因为一旦一个函数称为一个对象方法的话那么在这个方法内部this(结合下面的setStyles)指向这个对象)
function create(type){
var element=document.createElement(type);
//this=element;
- 你订酒店时的每一次点击 背后都是NoSQL和云计算
蓝儿唯美
NoSQL
全球最大的在线旅游公司Expedia旗下的酒店预订公司,它运营着89个网站,跨越68个国家,三年前开始实验公有云,以求让客户在预订网站上查询假期酒店时得到更快的信息获取体验。
云端本身是用于驱动网站的部分小功能的,如搜索框的自动推荐功能,还能保证处理Hotels.com服务的季节性需求高峰整体储能。
Hotels.com的首席技术官Thierry Bedos上个月在伦敦参加“2015 Clou
- java笔记1
a-john
java
1,面向对象程序设计(Object-oriented Propramming,OOP):java就是一种面向对象程序设计。
2,对象:我们将问题空间中的元素及其在解空间中的表示称为“对象”。简单来说,对象是某个类型的实例。比如狗是一个类型,哈士奇可以是狗的一个实例,也就是对象。
3,面向对象程序设计方式的特性:
3.1 万物皆为对象。
- C语言 sizeof和strlen之间的那些事 C/C++软件开发求职面试题 必备考点(一)
aijuans
C/C++求职面试必备考点
找工作在即,以后决定每天至少写一个知识点,主要是记录,逼迫自己动手、总结加深印象。当然如果能有一言半语让他人收益,后学幸运之至也。如有错误,还希望大家帮忙指出来。感激不尽。
后学保证每个写出来的结果都是自己在电脑上亲自跑过的,咱人笨,以前学的也半吊子。很多时候只能靠运行出来的结果再反过来
- 程序员写代码时就不要管需求了吗?
asia007
程序员不能一味跟需求走
编程也有2年了,刚开始不懂的什么都跟需求走,需求是怎样就用代码实现就行,也不管这个需求是否合理,是否为较好的用户体验。当然刚开始编程都会这样,但是如果有了2年以上的工作经验的程序员只知道一味写代码,而不在写的过程中思考一下这个需求是否合理,那么,我想这个程序员就只能一辈写敲敲代码了。
我的技术不是很好,但是就不代
- Activity的四种启动模式
百合不是茶
android栈模式启动Activity的标准模式启动栈顶模式启动单例模式启动
android界面的操作就是很多个activity之间的切换,启动模式决定启动的activity的生命周期 ;
启动模式xml中配置
<activity android:name=".MainActivity" android:launchMode="standard&quo
- Spring中@Autowired标签与@Resource标签的区别
bijian1013
javaspring@Resource@Autowired@Qualifier
Spring不但支持自己定义的@Autowired注解,还支持由JSR-250规范定义的几个注解,如:@Resource、 @PostConstruct及@PreDestroy。
1. @Autowired @Autowired是Spring 提供的,需导入 Package:org.springframewo
- Changes Between SOAP 1.1 and SOAP 1.2
sunjing
ChangesEnableSOAP 1.1SOAP 1.2
JAX-WS
SOAP Version 1.2 Part 0: Primer (Second Edition)
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)
SOAP Version 1.2 Part 2: Adjuncts (Second Edition)
Which style of WSDL
- 【Hadoop二】Hadoop常用命令
bit1129
hadoop
以Hadoop运行Hadoop自带的wordcount为例,
hadoop脚本位于/home/hadoop/hadoop-2.5.2/bin/hadoop,需要说明的是,这些命令的使用必须在Hadoop已经运行的情况下才能执行
Hadoop HDFS相关命令
hadoop fs -ls
列出HDFS文件系统的第一级文件和第一级
- java异常处理(初级)
白糖_
javaDAOspring虚拟机Ajax
从学习到现在从事java开发一年多了,个人觉得对java只了解皮毛,很多东西都是用到再去慢慢学习,编程真的是一项艺术,要完成一段好的代码,需要懂得很多。
最近项目经理让我负责一个组件开发,框架都由自己搭建,最让我头疼的是异常处理,我看了一些网上的源码,发现他们对异常的处理不是很重视,研究了很久都没有找到很好的解决方案。后来有幸看到一个200W美元的项目部分源码,通过他们对异常处理的解决方案,我终
- 记录整理-工作问题
braveCS
工作
1)那位同学还是CSV文件默认Excel打开看不到全部结果。以为是没写进去。同学甲说文件应该不分大小。后来log一下原来是有写进去。只是Excel有行数限制。那位同学进步好快啊。
2)今天同学说写文件的时候提示jvm的内存溢出。我马上反应说那就改一下jvm的内存大小。同学说改用分批处理了。果然想问题还是有局限性。改jvm内存大小只能暂时地解决问题,以后要是写更大的文件还是得改内存。想问题要长远啊
- org.apache.tools.zip实现文件的压缩和解压,支持中文
bylijinnan
apache
刚开始用java.util.Zip,发现不支持中文(网上有修改的方法,但比较麻烦)
后改用org.apache.tools.zip
org.apache.tools.zip的使用网上有更简单的例子
下面的程序根据实际需求,实现了压缩指定目录下指定文件的方法
import java.io.BufferedReader;
import java.io.BufferedWrit
- 读书笔记-4
chengxuyuancsdn
读书笔记
1、JSTL 核心标签库标签
2、避免SQL注入
3、字符串逆转方法
4、字符串比较compareTo
5、字符串替换replace
6、分拆字符串
1、JSTL 核心标签库标签共有13个,
学习资料:http://www.cnblogs.com/lihuiyy/archive/2012/02/24/2366806.html
功能上分为4类:
(1)表达式控制标签:out
- [物理与电子]半导体教材的一个小问题
comsci
问题
各种模拟电子和数字电子教材中都有这个词汇-空穴
书中对这个词汇的解释是; 当电子脱离共价键的束缚成为自由电子之后,共价键中就留下一个空位,这个空位叫做空穴
我现在回过头翻大学时候的教材,觉得这个
- Flashback Database --闪回数据库
daizj
oracle闪回数据库
Flashback 技术是以Undo segment中的内容为基础的, 因此受限于UNDO_RETENTON参数。要使用flashback 的特性,必须启用自动撤销管理表空间。
在Oracle 10g中, Flash back家族分为以下成员: Flashback Database, Flashback Drop,Flashback Query(分Flashback Query,Flashbac
- 简单排序:插入排序
dieslrae
插入排序
public void insertSort(int[] array){
int temp;
for(int i=1;i<array.length;i++){
temp = array[i];
for(int k=i-1;k>=0;k--)
- C语言学习六指针小示例、一维数组名含义,定义一个函数输出数组的内容
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int * p; //等价于 int *p 也等价于 int* p;
int i = 5;
char ch = 'A';
//p = 5; //error
//p = &ch; //error
//p = ch; //error
p = &i; //
- centos下php redis扩展的安装配置3种方法
dcj3sjt126com
redis
方法一
1.下载php redis扩展包 代码如下 复制代码
#wget http://redis.googlecode.com/files/redis-2.4.4.tar.gz
2 tar -zxvf 解压压缩包,cd /扩展包 (进入扩展包然后 运行phpize 一下是我环境中phpize的目录,/usr/local/php/bin/phpize (一定要
- 线程池(Executors)
shuizhaosi888
线程池
在java类库中,任务执行的主要抽象不是Thread,而是Executor,将任务的提交过程和执行过程解耦
public interface Executor {
void execute(Runnable command);
}
public class RunMain implements Executor{
@Override
pub
- openstack 快速安装笔记
haoningabc
openstack
前提是要配置好yum源
版本icehouse,操作系统redhat6.5
最简化安装,不要cinder和swift
三个节点
172 control节点keystone glance horizon
173 compute节点nova
173 network节点neutron
control
/etc/sysctl.conf
net.ipv4.ip_forward =
- 从c面向对象的实现理解c++的对象(二)
jimmee
C++面向对象虚函数
1. 类就可以看作一个struct,类的方法,可以理解为通过函数指针的方式实现的,类对象分配内存时,只分配成员变量的,函数指针并不需要分配额外的内存保存地址。
2. c++中类的构造函数,就是进行内存分配(malloc),调用构造函数
3. c++中类的析构函数,就时回收内存(free)
4. c++是基于栈和全局数据分配内存的,如果是一个方法内创建的对象,就直接在栈上分配内存了。
专门在
- 如何让那个一个div可以拖动
lingfeng520240
html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml
- 第10章 高级事件(中)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 计算两个经纬度之间的距离
roadrunners
计算纬度LBS经度距离
要解决这个问题的时候,到网上查了很多方案,最后计算出来的都与百度计算出来的有出入。下面这个公式计算出来的距离和百度计算出来的距离是一致的。
/**
*
* @param longitudeA
* 经度A点
* @param latitudeA
* 纬度A点
* @param longitudeB
*
- 最具争议的10个Java话题
tomcat_oracle
java
1、Java8已经到来。什么!? Java8 支持lambda。哇哦,RIP Scala! 随着Java8 的发布,出现很多关于新发布的Java8是否有潜力干掉Scala的争论,最终的结论是远远没有那么简单。Java8可能已经在Scala的lambda的包围中突围,但Java并非是函数式编程王位的真正觊觎者。
2、Java 9 即将到来
Oracle早在8月份就发布
- zoj 3826 Hierarchical Notation(模拟)
阿尔萨斯
rar
题目链接:zoj 3826 Hierarchical Notation
题目大意:给定一些结构体,结构体有value值和key值,Q次询问,输出每个key值对应的value值。
解题思路:思路很简单,写个类词法的递归函数,每次将key值映射成一个hash值,用map映射每个key的value起始终止位置,预处理完了查询就很简单了。 这题是最后10分钟出的,因为没有考虑value为{}的情