启发式算法和元启发式算法

链接:https://www.zhihu.com/question/36635796/answer/70528089

启发式策略(heuristic)是一类在求解某个具体问题时,在可以接受的时间和空间内能给出其可行解,但又不保证求得最优解(以及可行解与最优解的偏离)的策略的总称。许多启发式算法是相当特殊的,依赖于某个特定问题。启发式策略在一个寻求最优解的过程中能够根据个体或者全局的经验来改变其搜索路径,当寻求问题的最优解变得不可能或者很难完成时(e.g. NP-Complete 问题),启发式策略就是一个高效的获得可行解的办法。

元启发式策略(metaheuristic)则不同,元启发式策略通常是一个通用的启发式策略,他们通常不借助于某种问题的特有条件,从而能够运用于更广泛的方面。元启发式策略通常会对搜索过程提出一些要求,然后按照这些要求实现的启发式算法便被称为元启发式算法。许多元启发式算法都从自然界的一些随机现象取得灵感(e.g. 模拟退火、遗传算法)。现在元启发式算法的重要研究方向在于防止搜索过早得陷入局部最优,已经有很多人做了相应的工作,例如禁忌搜索(tabu)和非改进转移(模拟退火)。

 

原文:https://blog.csdn.net/xujinpeng99/article/details/8947816 

启发式算法(Heuristic Algorithm)

    启发式算法是指通过对过去经验的归纳推理以及实验分析来解决问题的方法,即借助于某种直观判断或试探的方法,以求得问题的次优解或以一定的概率求其最优解。通用性、稳定性以及较快的收敛性是衡量启发式算法性能的主要标准。

    启发式算法可分为传统启发式算法和元启发式算法。传统启发式算法包括构造型方法、局部搜索算法、松弛方法、解空间缩减算法等。

元启发式算法(Meta-heuristic Algorithm)

    元启发式算法是启发式算法的改进,是随机算法与局部搜索算法相结合的产物。元启发式是一个迭代生成过程,通过对不同概念的智能组合,该过程以启发式算法实现对搜索空间的探索和开发。在这个过程中,学习策略被用来获取和掌握信息,以有效地发现近似最优解。

    元启发式算法包括禁忌搜索算法、模拟退火算法、遗传算法、蚁群优化算法、粒子群优化算法、人工鱼群算法、人工蜂群算法、人工神经网络算法等。


 

 

你可能感兴趣的:(人工智能,最优化,进化算法)