上一篇ndroid6.0系统启动流程分析一:init进程博客我们分析了init进程,主要分析了init.rc的解析过程和command的执行流程。我们说Init.rc中配置的service都是在init.rc中的action中使用start命令启动的,start命令对应的处理函数是do_start。我们也分析了这个函数。那么这一节,我们分析zygote进程,zygote进程在init.rc中也被配置为一个服务,那么它是不是使用start命令来启动的呢?我在Init.rc中搜索发现并没有,难道我错了?
看下zygote在rc文件中的定义:
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
class main
socket zygote stream 660 root system
onrestart write /sys/android_power/request_state wake
onrestart write /sys/power/state on
onrestart restart media
onrestart restart netd
这个时候,大家不要忘了class main这行。我们在上片博客中不是说过class的作用吗?用于批量管理service。搜索main果然发现有如下语句:
on nonencrypted
class_start main
class_start late_start
on property:vold.decrypt=trigger_restart_min_framework
class_start main
on property:vold.decrypt=trigger_restart_framework
class_start main
class_start late_start
但是发现有三个地方出现 class_start main,所以本菜就迷糊了,不知道是哪里启动的zygote,希望路过的大神能指点下迷津…
class_start 对应的处理方法是do_class_start,该方法定义在system\core\init\builtins.cpp中:
int do_class_start(int nargs, char **args)
{
/* Starting a class does not start services
* which are explicitly disabled. They must
* be started individually.
*/
service_for_each_class(args[1], service_start_if_not_disabled);
return 0;
}
调用service_for_each_class方法进一步处理:
void service_for_each_class(const char *classname,
void (*func)(struct service *svc))
{
struct listnode *node;
struct service *svc;
list_for_each(node, &service_list) {
svc = node_to_item(node, struct service, slist);
if (!strcmp(svc->classname, classname)) {
func(svc);
}
}
}
遍历service_list链表,没找到一个classname为main的service,就调用service_start_if_not_disabled来进一步处理,service_start_if_not_disabled方法如下:
static void service_start_if_not_disabled(struct service *svc)
{
if (!(svc->flags & SVC_DISABLED)) {
service_start(svc, NULL);
} else {
svc->flags |= SVC_DISABLED_START;
}
}
可以看到最终还是调用了service_start方法来启动service,这个启动单个service一样了。这份函数我们在上节已经分析过了,这里就不再啰嗦了。
zygote进程的可执行文件就是/system/bin/app_process,源码在\frameworks\base\cmds\app_process/app_main.cpp中。我们从它的main函数看起:
int main(int argc, char* const argv[])
{
if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
// Older kernels don't understand PR_SET_NO_NEW_PRIVS and return
// EINVAL. Don't die on such kernels.
if (errno != EINVAL) {
LOG_ALWAYS_FATAL("PR_SET_NO_NEW_PRIVS failed: %s", strerror(errno));
return 12;
}
}
AppRuntime runtime(argv[0], computeArgBlockSize(argc, argv));
// Process command line arguments
// ignore argv[0]
argc--;
argv++;
// Everything up to '--' or first non '-' arg goes to the vm.
//
// The first argument after the VM args is the "parent dir", which
// is currently unused.
//
// After the parent dir, we expect one or more the following internal
// arguments :
//
// --zygote : Start in zygote mode
// --start-system-server : Start the system server.
// --application : Start in application (stand alone, non zygote) mode.
// --nice-name : The nice name for this process.
//
// For non zygote starts, these arguments will be followed by
// the main class name. All remaining arguments are passed to
// the main method of this class.
//
// For zygote starts, all remaining arguments are passed to the zygote.
// main function.
//
// Note that we must copy argument string values since we will rewrite the
// entire argument block when we apply the nice name to argv0.
int i;
for (i = 0; i < argc; i++) {
if (argv[i][0] != '-') {
break;
}
if (argv[i][1] == '-' && argv[i][2] == 0) {
++i; // Skip --.
break;
}
runtime.addOption(strdup(argv[i]));
}
// Parse runtime arguments. Stop at first unrecognized option.
bool zygote = false;
bool startSystemServer = false;
bool application = false;
String8 niceName;
String8 className;
++i; // Skip unused "parent dir" argument.
while (i < argc) {
const char* arg = argv[i++];
if (strcmp(arg, "--zygote") == 0) {
zygote = true;
niceName = ZYGOTE_NICE_NAME;
} else if (strcmp(arg, "--start-system-server") == 0) {
startSystemServer = true;
} else if (strcmp(arg, "--application") == 0) {
application = true;
} else if (strncmp(arg, "--nice-name=", 12) == 0) {
niceName.setTo(arg + 12);
} else if (strncmp(arg, "--", 2) != 0) {
className.setTo(arg);
break;
} else {
--i;
break;
}
}
Vector args;
if (!className.isEmpty()) {
// We're not in zygote mode, the only argument we need to pass
// to RuntimeInit is the application argument.
//
// The Remainder of args get passed to startup class main(). Make
// copies of them before we overwrite them with the process name.
args.add(application ? String8("application") : String8("tool"));
runtime.setClassNameAndArgs(className, argc - i, argv + i);
} else {
// We're in zygote mode.
maybeCreateDalvikCache();
if (startSystemServer) {
args.add(String8("start-system-server"));
}
char prop[PROP_VALUE_MAX];
if (property_get(ABI_LIST_PROPERTY, prop, NULL) == 0) {
LOG_ALWAYS_FATAL("app_process: Unable to determine ABI list from property %s.",
ABI_LIST_PROPERTY);
return 11;
}
String8 abiFlag("--abi-list=");
abiFlag.append(prop);
args.add(abiFlag);
// In zygote mode, pass all remaining arguments to the zygote
// main() method.
for (; i < argc; ++i) {
args.add(String8(argv[i]));
}
}
if (!niceName.isEmpty()) {
runtime.setArgv0(niceName.string());
set_process_name(niceName.string());
}
if (zygote) {
runtime.start("com.android.internal.os.ZygoteInit", args, zygote);
} else if (className) {
runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
} else {
fprintf(stderr, "Error: no class name or --zygote supplied.\n");
app_usage();
LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");
return 10;
}
}
因为zygote是在init进程中启动的,我们的启动它的时候传了一些参数上来,我们看看这些参数有什么:
在system/core/init/init.cpp中的service_start函数中,使用如下代码启动zygote。
if (execve(svc->args[0], (char**) svc->args, (char**) ENV) < 0) {
ERROR("cannot execve('%s'): %s\n", svc->args[0], strerror(errno));
}
svc->args[0]=“/system/bin/app_process”,因为在.rc中就是这么配置的。svc->args=“/system/bin/app_process -Xzygote /system/bin –zygote –start-system-server”,因为svc->args的构造是在service的解析中完成的,具体过程可以参考 Android6.0系统启动流程分析一:init进程。
理清了参数,我们再来回到main函数。main函数主要做的事情有:
1. 构造一个AppRuntime实例。
2. 解析参数,通过解析参数,我们知道:
zygote = true;
startSystemServer = true;
application = false;
3. 调用AppRuntime的start方法。
前面没什么好说的,我们看看AppRuntime的start做了什么。
调用这个方法时,传入了如下参数:
参数一:”com.android.internal.os.ZygoteInit”
参数二:/system/bin/app_process -Xzygote /system/bin –zygote –start-system-server”
参数三:true
下面看看这个start方法:
/*
* Start the Android runtime. This involves starting the virtual machine
* and calling the "static void main(String[] args)" method in the class
* named by "className".
*
* Passes the main function two arguments, the class name and the specified
* options string.
*/
void AndroidRuntime::start(const char* className, const Vector& options, bool zygote)
{
ALOGD(">>>>>> START %s uid %d <<<<<<\n",
className != NULL ? className : "(unknown)", getuid());
static const String8 startSystemServer("start-system-server");
/*
* 'startSystemServer == true' means runtime is obsolete and not run from
* init.rc anymore, so we print out the boot start event here.
*/
for (size_t i = 0; i < options.size(); ++i) {
if (options[i] == startSystemServer) {
/* track our progress through the boot sequence */
const int LOG_BOOT_PROGRESS_START = 3000;
LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START, ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
}
}
const char* rootDir = getenv("ANDROID_ROOT");
if (rootDir == NULL) {
rootDir = "/system";
if (!hasDir("/system")) {
LOG_FATAL("No root directory specified, and /android does not exist.");
return;
}
setenv("ANDROID_ROOT", rootDir, 1);
}
//const char* kernelHack = getenv("LD_ASSUME_KERNEL");
//ALOGD("Found LD_ASSUME_KERNEL='%s'\n", kernelHack);
/* start the virtual machine */
JniInvocation jni_invocation;
jni_invocation.Init(NULL);
JNIEnv* env;
if (startVm(&mJavaVM, &env, zygote) != 0) {
return;
}
onVmCreated(env);
/*
* Register android functions.
*/
if (startReg(env) < 0) {
ALOGE("Unable to register all android natives\n");
return;
}
/*
* We want to call main() with a String array with arguments in it.
* At present we have two arguments, the class name and an option string.
* Create an array to hold them.
*/
jclass stringClass;
jobjectArray strArray;
jstring classNameStr;
stringClass = env->FindClass("java/lang/String");
assert(stringClass != NULL);
strArray = env->NewObjectArray(options.size() + 1, stringClass, NULL);
assert(strArray != NULL);
classNameStr = env->NewStringUTF(className);
assert(classNameStr != NULL);
env->SetObjectArrayElement(strArray, 0, classNameStr);
for (size_t i = 0; i < options.size(); ++i) {
jstring optionsStr = env->NewStringUTF(options.itemAt(i).string());
assert(optionsStr != NULL);
env->SetObjectArrayElement(strArray, i + 1, optionsStr);
}
/*
* Start VM. This thread becomes the main thread of the VM, and will
* not return until the VM exits.
*/
char* slashClassName = toSlashClassName(className);
jclass startClass = env->FindClass(slashClassName);
if (startClass == NULL) {
ALOGE("JavaVM unable to locate class '%s'\n", slashClassName);
/* keep going */
} else {
jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
"([Ljava/lang/String;)V");
if (startMeth == NULL) {
ALOGE("JavaVM unable to find main() in '%s'\n", className);
/* keep going */
} else {
env->CallStaticVoidMethod(startClass, startMeth, strArray);
#if 0
if (env->ExceptionCheck())
threadExitUncaughtException(env);
#endif
}
}
free(slashClassName);
ALOGD("Shutting down VM\n");
if (mJavaVM->DetachCurrentThread() != JNI_OK)
ALOGW("Warning: unable to detach main thread\n");
if (mJavaVM->DestroyJavaVM() != 0)
ALOGW("Warning: VM did not shut down cleanly\n");
}
这份函数作如下事情:
1. 启动java虚拟机。对虚拟机感兴趣的,这里或许是一个重要的突破口。我对虚拟机了解不多,这里就不展开了。
2. 注册本地方法。注册本地方式调用startReg方法,这个方法可以看一看:
/*static*/ int AndroidRuntime::startReg(JNIEnv* env)
{
/*
* This hook causes all future threads created in this process to be
* attached to the JavaVM. (This needs to go away in favor of JNI
* Attach calls.)
*/
androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc);
ALOGV("--- registering native functions ---\n");
/*
* Every "register" function calls one or more things that return
* a local reference (e.g. FindClass). Because we haven't really
* started the VM yet, they're all getting stored in the base frame
* and never released. Use Push/Pop to manage the storage.
*/
env->PushLocalFrame(200);
if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {
env->PopLocalFrame(NULL);
return -1;
}
env->PopLocalFrame(NULL);
//createJavaThread("fubar", quickTest, (void*) "hello");
return 0;
}
这个方法中,使用register_jni_procs方法完成注册,该方法如下:
static int register_jni_procs(const RegJNIRec array[], size_t count, JNIEnv* env)
{
for (size_t i = 0; i < count; i++) {
if (array[i].mProc(env) < 0) {
#ifndef NDEBUG
ALOGD("----------!!! %s failed to load\n", array[i].mName);
#endif
return -1;
}
}
return 0;
}
这个方法传入的一个数组作为参数,这个方法的作用就是遍历这个数组,调用这个数组的mProc方法。这个数组就是gRegJNI:
static const RegJNIRec gRegJNI[] = {
REG_JNI(register_com_android_internal_os_RuntimeInit),
REG_JNI(register_android_os_SystemClock),
REG_JNI(register_android_util_EventLog),
REG_JNI(register_android_util_Log),
REG_JNI(register_android_content_AssetManager),
REG_JNI(register_android_content_StringBlock),
REG_JNI(register_android_content_XmlBlock),
REG_JNI(register_android_emoji_EmojiFactory),
...
};
也就是说这个方法会调用上述数组中的每一项REG_JNI中声明的函数来实现各个模块的jni函数的注册的。
回到start方法,接下来就是用jni规范,从c++中调用java中的静态方法了,这个方法就是ZygoteInit中的main方法。
现在代码从c++转入到java部分了,我们来看ZygoteInit中的main方法:
public static void main(String argv[]) {
try {
RuntimeInit.enableDdms();
// Start profiling the zygote initialization.
SamplingProfilerIntegration.start();
boolean startSystemServer = false;
String socketName = "zygote";
String abiList = null;
for (int i = 1; i < argv.length; i++) {
if ("start-system-server".equals(argv[i])) {
startSystemServer = true;
} else if (argv[i].startsWith(ABI_LIST_ARG)) {
abiList = argv[i].substring(ABI_LIST_ARG.length());
} else if (argv[i].startsWith(SOCKET_NAME_ARG)) {
socketName = argv[i].substring(SOCKET_NAME_ARG.length());
} else {
throw new RuntimeException("Unknown command line argument: " + argv[i]);
}
}
if (abiList == null) {
throw new RuntimeException("No ABI list supplied.");
}
registerZygoteSocket(socketName);
EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
SystemClock.uptimeMillis());
preload();
EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
SystemClock.uptimeMillis());
// Finish profiling the zygote initialization.
SamplingProfilerIntegration.writeZygoteSnapshot();
// Do an initial gc to clean up after startup
gcAndFinalize();
// Disable tracing so that forked processes do not inherit stale tracing tags from
// Zygote.
Trace.setTracingEnabled(false);
if (startSystemServer) {
startSystemServer(abiList, socketName);
}
Log.i(TAG, "Accepting command socket connections");
runSelectLoop(abiList);
closeServerSocket();
} catch (MethodAndArgsCaller caller) {
caller.run();
} catch (RuntimeException ex) {
Log.e(TAG, "Zygote died with exception", ex);
closeServerSocket();
throw ex;
}
}
这个方法做了如下事情:
1. 注册Zytote套接字。这个套接字是在system/core/init/init.cpp中的service_start方法中创建的,不清楚的请看上一篇博客。service_start方法创建完套接字以后会发布这个套接字,使用publish_socket方法。这个方法也是定义在system/core/init/init.cpp中:
static void publish_socket(const char *name, int fd)
{
char key[64] = ANDROID_SOCKET_ENV_PREFIX;
char val[64];
strlcpy(key + sizeof(ANDROID_SOCKET_ENV_PREFIX) - 1,
name,
sizeof(key) - sizeof(ANDROID_SOCKET_ENV_PREFIX));
snprintf(val, sizeof(val), "%d", fd);
add_environment(key, val);
/* make sure we don't close-on-exec */
fcntl(fd, F_SETFD, 0);
}
这里主要使用add_environment方法把这个套接字添加到环境变量中,添加的结果是一对键值对:(ANDROID_SOCKET_zygote,fd)。那么我们在这里是不是就可以从环境变量中获取呢?
看看registerZygoteSocket方法:
private static void registerZygoteSocket(String socketName) {
if (sServerSocket == null) {
int fileDesc;
final String fullSocketName = ANDROID_SOCKET_PREFIX + socketName;
try {
String env = System.getenv(fullSocketName);
fileDesc = Integer.parseInt(env);
} catch (RuntimeException ex) {
throw new RuntimeException(fullSocketName + " unset or invalid", ex);
}
try {
FileDescriptor fd = new FileDescriptor();
fd.setInt$(fileDesc);
sServerSocket = new LocalServerSocket(fd);
} catch (IOException ex) {
throw new RuntimeException(
"Error binding to local socket '" + fileDesc + "'", ex);
}
}
}
果不其然吧,就是通过System.getenv方法获取到我们在service_start方法中创建的套接字,然后对其进一步封装。并把封装的结果保存在sServerSocket 变量中。
第一件事情就做完了,回到main方法。
2.初始化gc:gcAndFinalize();
3.启动SystemServer。
SystemServer是Android系统非常和核心的服务,它会在创建后启动系统中的其他服务,然后成为所有服务的管理者,向应用程序和其他服务提供服务。这一部分我们放在下一节来分析。
4.进入监听状态:runSelectLoop
Zygote监听套接字
private static void runSelectLoop(String abiList) throws MethodAndArgsCaller {
ArrayList fds = new ArrayList();
ArrayList peers = new ArrayList();
fds.add(sServerSocket.getFileDescriptor());
peers.add(null);
while (true) {
StructPollfd[] pollFds = new StructPollfd[fds.size()];
for (int i = 0; i < pollFds.length; ++i) {
pollFds[i] = new StructPollfd();
pollFds[i].fd = fds.get(i);
pollFds[i].events = (short) POLLIN;
}
try {
Os.poll(pollFds, -1);
} catch (ErrnoException ex) {
throw new RuntimeException("poll failed", ex);
}
for (int i = pollFds.length - 1; i >= 0; --i) {
if ((pollFds[i].revents & POLLIN) == 0) {
continue;
}
if (i == 0) {
ZygoteConnection newPeer = acceptCommandPeer(abiList);
peers.add(newPeer);
fds.add(newPeer.getFileDesciptor());
} else {
boolean done = peers.get(i).runOnce();
if (done) {
peers.remove(i);
fds.remove(i);
}
}
}
}
}
这个方法开始进入zygote套接字的监听状态了。当zygote套接字接受到写入操作,Zygote进程唤醒,执行ZygoteConnection的runOnce方法。
我们知道Zygote俗称“受精卵”,它是所有java进程的祖先进程。这里的runOnce便是创建进程的开端了。虽然暂时不知道上层在什么情况下,如何向zytoge套接字写入数据,从而开启进程创建的,但是没有关系,我们依然可以顺着代码的思路,看看从runOnce开始,是如何创建出一个进程的。
runOnce方法如下:
/**
* Reads one start command from the command socket. If successful,
* a child is forked and a {@link ZygoteInit.MethodAndArgsCaller}
* exception is thrown in that child while in the parent process,
* the method returns normally. On failure, the child is not
* spawned and messages are printed to the log and stderr. Returns
* a boolean status value indicating whether an end-of-file on the command
* socket has been encountered.
*
* @return false if command socket should continue to be read from, or
* true if an end-of-file has been encountered.
* @throws ZygoteInit.MethodAndArgsCaller trampoline to invoke main()
* method in child process
*/
boolean runOnce() throws ZygoteInit.MethodAndArgsCaller {
String args[];
Arguments parsedArgs = null;
FileDescriptor[] descriptors;
try {
args = readArgumentList();
descriptors = mSocket.getAncillaryFileDescriptors();
} catch (IOException ex) {
Log.w(TAG, "IOException on command socket " + ex.getMessage());
closeSocket();
return true;
}
if (args == null) {
// EOF reached.
closeSocket();
return true;
}
/** the stderr of the most recent request, if avail */
PrintStream newStderr = null;
if (descriptors != null && descriptors.length >= 3) {
newStderr = new PrintStream(
new FileOutputStream(descriptors[2]));
}
int pid = -1;
FileDescriptor childPipeFd = null;
FileDescriptor serverPipeFd = null;
try {
parsedArgs = new Arguments(args);
if (parsedArgs.abiListQuery) {
return handleAbiListQuery();
}
if (parsedArgs.permittedCapabilities != 0 || parsedArgs.effectiveCapabilities != 0) {
throw new ZygoteSecurityException("Client may not specify capabilities: " +
"permitted=0x" + Long.toHexString(parsedArgs.permittedCapabilities) +
", effective=0x" + Long.toHexString(parsedArgs.effectiveCapabilities));
}
applyUidSecurityPolicy(parsedArgs, peer);
applyInvokeWithSecurityPolicy(parsedArgs, peer);
applyDebuggerSystemProperty(parsedArgs);
applyInvokeWithSystemProperty(parsedArgs);
int[][] rlimits = null;
if (parsedArgs.rlimits != null) {
rlimits = parsedArgs.rlimits.toArray(intArray2d);
}
if (parsedArgs.invokeWith != null) {
FileDescriptor[] pipeFds = Os.pipe2(O_CLOEXEC);
childPipeFd = pipeFds[1];
serverPipeFd = pipeFds[0];
Os.fcntlInt(childPipeFd, F_SETFD, 0);
}
/**
* In order to avoid leaking descriptors to the Zygote child,
* the native code must close the two Zygote socket descriptors
* in the child process before it switches from Zygote-root to
* the UID and privileges of the application being launched.
*
* In order to avoid "bad file descriptor" errors when the
* two LocalSocket objects are closed, the Posix file
* descriptors are released via a dup2() call which closes
* the socket and substitutes an open descriptor to /dev/null.
*/
int [] fdsToClose = { -1, -1 };
FileDescriptor fd = mSocket.getFileDescriptor();
if (fd != null) {
fdsToClose[0] = fd.getInt$();
}
fd = ZygoteInit.getServerSocketFileDescriptor();
if (fd != null) {
fdsToClose[1] = fd.getInt$();
}
fd = null;
pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid, parsedArgs.gids,
parsedArgs.debugFlags, rlimits, parsedArgs.mountExternal, parsedArgs.seInfo,
parsedArgs.niceName, fdsToClose, parsedArgs.instructionSet,
parsedArgs.appDataDir);
} catch (ErrnoException ex) {
logAndPrintError(newStderr, "Exception creating pipe", ex);
} catch (IllegalArgumentException ex) {
logAndPrintError(newStderr, "Invalid zygote arguments", ex);
} catch (ZygoteSecurityException ex) {
logAndPrintError(newStderr,
"Zygote security policy prevents request: ", ex);
}
try {
if (pid == 0) {
// in child
IoUtils.closeQuietly(serverPipeFd);
serverPipeFd = null;
handleChildProc(parsedArgs, descriptors, childPipeFd, newStderr);
// should never get here, the child is expected to either
// throw ZygoteInit.MethodAndArgsCaller or exec().
return true;
} else {
// in parent...pid of < 0 means failure
IoUtils.closeQuietly(childPipeFd);
childPipeFd = null;
return handleParentProc(pid, descriptors, serverPipeFd, parsedArgs);
}
} finally {
IoUtils.closeQuietly(childPipeFd);
IoUtils.closeQuietly(serverPipeFd);
}
}
这个方法比较长,我们先看看它的注释,大概意思如下:
这个方法会从socket中读取一个命令,成功的话就会创建一个子进程出来,并且会抛出一个异常:ZygoteInit.MethodAndArgsCaller 。
也就是说即使创建成功了也会抛出异常,然后会在Zygote的main方法中接受检测到异常,进而调用caller.run()方法作进一步处理。
整个过程有很多地方看不懂,这里主要梳理的是整个流程。大神请绕道…
下面对这个过程做简要分析。
runOnce方法主要调用了 Zygote.forkAndSpecialize方法进一步处理,这个方法执行完成以后 ,子进程就已经创建好了,这个时候pid=0也就是在子进程中执行,在执行handleChildProc时,子进程会抛出异常,异常被捕获后执行MethodAndArgsCaller类中的run方法被执行,这个方法最终会调用到ActivityThread的main方法。这个过程是在子进程中实现的。pid!=0就意味着后面的代码是在Zygote进程中执行,这个时候执行的handleParentProc方法,这个方法会做一些清理工作(从注释了解到的,具体code没能理解)。
接下来看看forkAndSpecialize方法,这个方法定义下Zygote类中,看看它怎么一步步创建子进程的。
public static int forkAndSpecialize(int uid, int gid, int[] gids, int debugFlags,
int[][] rlimits, int mountExternal, String seInfo, String niceName, int[] fdsToClose,
String instructionSet, String appDataDir) {
VM_HOOKS.preFork();
int pid = nativeForkAndSpecialize(
uid, gid, gids, debugFlags, rlimits, mountExternal, seInfo, niceName, fdsToClose,
instructionSet, appDataDir);
// Enable tracing as soon as possible for the child process.
if (pid == 0) {
Trace.setTracingEnabled(true);
// Note that this event ends at the end of handleChildProc,
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "PostFork");
}
VM_HOOKS.postForkCommon();
return pid;
}
三件事情:
1. VM_HOOKS.preFork(),做准备工作。
2. nativeForkAndSpecialize,创建子进程
3. VM_HOOKS.postForkCommon();启动Zygote的4个Daemon线程,java堆整理,引用队列,以及析构线程。
首先看看preFork方法,这个方法定义在libcore\dalvik\src\main\java\dalvik\system\ZygoteHooks类中。
public void preFork() {
Daemons.stop();
waitUntilAllThreadsStopped();
token = nativePreFork();
}
Daemons.stop():
public static void stop() {
HeapTaskDaemon.INSTANCE.stop();
ReferenceQueueDaemon.INSTANCE.stop();
FinalizerDaemon.INSTANCE.stop();
FinalizerWatchdogDaemon.INSTANCE.stop();
}
停止四个线程:Daemon线程,java堆整理,引用队列,析构线程
也就是创建子进程的时候,不能有这几个线程搅和。
waitUntilAllThreadsStopped:
private static void waitUntilAllThreadsStopped() {
File tasks = new File("/proc/self/task");
// All Java daemons are stopped already. We're just waiting for their OS counterparts to
// finish as well. This shouldn't take much time so spinning is ok here.
while (tasks.list().length > 1) {
Thread.yield();
}
}
}
当/proc/self/task文件中记录的线程数大于1,就不断的让出cpu,直到只剩下一个线程。
nativePreFork:
这个方法定义在art\runtime\native\dalvik_system_ZygoteHooks.cc中:
static jlong ZygoteHooks_nativePreFork(JNIEnv* env, jclass) {
Runtime* runtime = Runtime::Current();
CHECK(runtime->IsZygote()) << "runtime instance not started with -Xzygote";
runtime->PreZygoteFork();
if (Trace::GetMethodTracingMode() != TracingMode::kTracingInactive) {
// Tracing active, pause it.
Trace::Pause();
}
// Grab thread before fork potentially makes Thread::pthread_key_self_ unusable.
return reinterpret_cast(ThreadForEnv(env));
}
调用PreZygoteFork方法,这个方法定义在art\runtime\runtime.cc中:
void Runtime::PreZygoteFork() {
heap_->PreZygoteFork();
}
这个函数用来初始化堆。
nativeForkAndSpecialize方法定义在frameworks\base\core\jni\com_android_internal_os_Zygote.cpp中:
static jint com_android_internal_os_Zygote_nativeForkAndSpecialize(
JNIEnv* env, jclass, jint uid, jint gid, jintArray gids,
jint debug_flags, jobjectArray rlimits,
jint mount_external, jstring se_info, jstring se_name,
jintArray fdsToClose, jstring instructionSet, jstring appDataDir) {
// Grant CAP_WAKE_ALARM to the Bluetooth process.
jlong capabilities = 0;
if (uid == AID_BLUETOOTH) {
capabilities |= (1LL << CAP_WAKE_ALARM);
}
return ForkAndSpecializeCommon(env, uid, gid, gids, debug_flags,
rlimits, capabilities, capabilities, mount_external, se_info,
se_name, false, fdsToClose, instructionSet, appDataDir);
}
调用ForkAndSpecializeCommon方法进一步处理:
// Utility routine to fork zygote and specialize the child process.
static pid_t ForkAndSpecializeCommon(JNIEnv* env, uid_t uid, gid_t gid, jintArray javaGids,
jint debug_flags, jobjectArray javaRlimits,
jlong permittedCapabilities, jlong effectiveCapabilities,
jint mount_external,
jstring java_se_info, jstring java_se_name,
bool is_system_server, jintArray fdsToClose,
jstring instructionSet, jstring dataDir) {
SetSigChldHandler();
pid_t pid = fork();
if (pid == 0) {
// The child process.
gMallocLeakZygoteChild = 1;
// Clean up any descriptors which must be closed immediately
DetachDescriptors(env, fdsToClose);
// Keep capabilities across UID change, unless we're staying root.
if (uid != 0) {
EnableKeepCapabilities(env);
}
DropCapabilitiesBoundingSet(env);
bool use_native_bridge = !is_system_server && (instructionSet != NULL)
&& android::NativeBridgeAvailable();
if (use_native_bridge) {
ScopedUtfChars isa_string(env, instructionSet);
use_native_bridge = android::NeedsNativeBridge(isa_string.c_str());
}
if (use_native_bridge && dataDir == NULL) {
// dataDir should never be null if we need to use a native bridge.
// In general, dataDir will never be null for normal applications. It can only happen in
// special cases (for isolated processes which are not associated with any app). These are
// launched by the framework and should not be emulated anyway.
use_native_bridge = false;
ALOGW("Native bridge will not be used because dataDir == NULL.");
}
if (!MountEmulatedStorage(uid, mount_external, use_native_bridge)) {
ALOGW("Failed to mount emulated storage: %s", strerror(errno));
if (errno == ENOTCONN || errno == EROFS) {
// When device is actively encrypting, we get ENOTCONN here
// since FUSE was mounted before the framework restarted.
// When encrypted device is booting, we get EROFS since
// FUSE hasn't been created yet by init.
// In either case, continue without external storage.
} else {
ALOGE("Cannot continue without emulated storage");
RuntimeAbort(env);
}
}
if (!is_system_server) {
int rc = createProcessGroup(uid, getpid());
if (rc != 0) {
if (rc == -EROFS) {
ALOGW("createProcessGroup failed, kernel missing CONFIG_CGROUP_CPUACCT?");
} else {
ALOGE("createProcessGroup(%d, %d) failed: %s", uid, pid, strerror(-rc));
}
}
}
SetGids(env, javaGids);
SetRLimits(env, javaRlimits);
if (use_native_bridge) {
ScopedUtfChars isa_string(env, instructionSet);
ScopedUtfChars data_dir(env, dataDir);
android::PreInitializeNativeBridge(data_dir.c_str(), isa_string.c_str());
}
int rc = setresgid(gid, gid, gid);
if (rc == -1) {
ALOGE("setresgid(%d) failed: %s", gid, strerror(errno));
RuntimeAbort(env);
}
rc = setresuid(uid, uid, uid);
if (rc == -1) {
ALOGE("setresuid(%d) failed: %s", uid, strerror(errno));
RuntimeAbort(env);
}
if (NeedsNoRandomizeWorkaround()) {
// Work around ARM kernel ASLR lossage (http://b/5817320).
int old_personality = personality(0xffffffff);
int new_personality = personality(old_personality | ADDR_NO_RANDOMIZE);
if (new_personality == -1) {
ALOGW("personality(%d) failed: %s", new_personality, strerror(errno));
}
}
SetCapabilities(env, permittedCapabilities, effectiveCapabilities);
SetSchedulerPolicy(env);
const char* se_info_c_str = NULL;
ScopedUtfChars* se_info = NULL;
if (java_se_info != NULL) {
se_info = new ScopedUtfChars(env, java_se_info);
se_info_c_str = se_info->c_str();
if (se_info_c_str == NULL) {
ALOGE("se_info_c_str == NULL");
RuntimeAbort(env);
}
}
const char* se_name_c_str = NULL;
ScopedUtfChars* se_name = NULL;
if (java_se_name != NULL) {
se_name = new ScopedUtfChars(env, java_se_name);
se_name_c_str = se_name->c_str();
if (se_name_c_str == NULL) {
ALOGE("se_name_c_str == NULL");
RuntimeAbort(env);
}
}
rc = selinux_android_setcontext(uid, is_system_server, se_info_c_str, se_name_c_str);
if (rc == -1) {
ALOGE("selinux_android_setcontext(%d, %d, \"%s\", \"%s\") failed", uid,
is_system_server, se_info_c_str, se_name_c_str);
RuntimeAbort(env);
}
// Make it easier to debug audit logs by setting the main thread's name to the
// nice name rather than "app_process".
if (se_info_c_str == NULL && is_system_server) {
se_name_c_str = "system_server";
}
if (se_info_c_str != NULL) {
SetThreadName(se_name_c_str);
}
delete se_info;
delete se_name;
UnsetSigChldHandler();
env->CallStaticVoidMethod(gZygoteClass, gCallPostForkChildHooks, debug_flags,
is_system_server ? NULL : instructionSet);
if (env->ExceptionCheck()) {
ALOGE("Error calling post fork hooks.");
RuntimeAbort(env);
}
} else if (pid > 0) {
// the parent process
}
return pid;
}
这个方法出现了我们非常熟悉的fork方法,然后在子进程中调用Zygote类中的callPostForkChildHooks方法:
private static void callPostForkChildHooks(int debugFlags, String instructionSet) {
VM_HOOKS.postForkChild(debugFlags, instructionSet);
}
这里就不进一步追踪下去了,总之ForkAndSpecializeCommon方法调用fork系统调用创建了子进程,在进程中做了些初始化工作,然后返回了pid。这里会返回两次,子进程返回一次,父进程返回一次。
返回到nativeForkAndSpecialize方法后进一步返回,最终回到Zygote类的forkAndSpecialize方法,这个方法接下来会调用postForkCommon方法。postForkCommon方法定义在libcore\dalvik\src\main\java\dalvik\system\ZygoteHooks类中:
/**
* Called by the zygote in both the parent and child processes after
* every fork. In the child process, this method is called after
* {@code postForkChild}.
*/
public void postForkCommon() {
Daemons.start();
}
注意这里子进程和父进程都会执行,也就是都会启动4个线程:Daemon线程,java堆整理,引用队列,以及析构线程。
父进程的线程在fork之前停止了,这里也要重新启动。
子进程和父进程都继续返回。
返回到ZygoteConnect的runOnce方法中,继续往下执行,则子进程执行handleChildProc方法,父进程执行handleParentProc方法。
父进程不是我们关注的,我们关注的是子进程,所以接下来看看handleChildProc方法,这个方法定义在frameworks\base\core\java\com\android\internal\os\ZygoteConnection中:
private void handleChildProc(Arguments parsedArgs,
FileDescriptor[] descriptors, FileDescriptor pipeFd, PrintStream newStderr)
throws ZygoteInit.MethodAndArgsCaller {
/**
* By the time we get here, the native code has closed the two actual Zygote
* socket connections, and substituted /dev/null in their place. The LocalSocket
* objects still need to be closed properly.
*/
closeSocket();
ZygoteInit.closeServerSocket();
if (descriptors != null) {
try {
Os.dup2(descriptors[0], STDIN_FILENO);
Os.dup2(descriptors[1], STDOUT_FILENO);
Os.dup2(descriptors[2], STDERR_FILENO);
for (FileDescriptor fd: descriptors) {
IoUtils.closeQuietly(fd);
}
newStderr = System.err;
} catch (ErrnoException ex) {
Log.e(TAG, "Error reopening stdio", ex);
}
}
if (parsedArgs.niceName != null) {
Process.setArgV0(parsedArgs.niceName);
}
// End of the postFork event.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
if (parsedArgs.invokeWith != null) {
WrapperInit.execApplication(parsedArgs.invokeWith,
parsedArgs.niceName, parsedArgs.targetSdkVersion,
VMRuntime.getCurrentInstructionSet(),
pipeFd, parsedArgs.remainingArgs);
} else {
RuntimeInit.zygoteInit(parsedArgs.targetSdkVersion,
parsedArgs.remainingArgs, null /* classLoader */);
}
}
子进程会继承父进程打开的文件描述符,所以子进程中有zygote套接字描述符,这里需要把它关掉。然后重要的是调用RuntimeInit.zygoteInit方法。这个方法定义在frameworks\base\core\java\com\android\internal\os\RuntimeInit中:
public static final void zygoteInit(int targetSdkVersion, String[] argv, ClassLoader classLoader)
throws ZygoteInit.MethodAndArgsCaller {
if (DEBUG) Slog.d(TAG, "RuntimeInit: Starting application from zygote");
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "RuntimeInit");
redirectLogStreams();
commonInit();
nativeZygoteInit();
applicationInit(targetSdkVersion, argv, classLoader);
}
从名字看也是做初始化工作。重点来看看applicationInit方法吧,这个方法定义在frameworks\base\core\java\com\android\internal\os\RuntimeInit中:
private static void applicationInit(int targetSdkVersion, String[] argv, ClassLoader classLoader)
throws ZygoteInit.MethodAndArgsCaller {
// If the application calls System.exit(), terminate the process
// immediately without running any shutdown hooks. It is not possible to
// shutdown an Android application gracefully. Among other things, the
// Android runtime shutdown hooks close the Binder driver, which can cause
// leftover running threads to crash before the process actually exits.
nativeSetExitWithoutCleanup(true);
// We want to be fairly aggressive about heap utilization, to avoid
// holding on to a lot of memory that isn't needed.
VMRuntime.getRuntime().setTargetHeapUtilization(0.75f);
VMRuntime.getRuntime().setTargetSdkVersion(targetSdkVersion);
final Arguments args;
try {
args = new Arguments(argv);
} catch (IllegalArgumentException ex) {
Slog.e(TAG, ex.getMessage());
// let the process exit
return;
}
// The end of of the RuntimeInit event (see #zygoteInit).
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
// Remaining arguments are passed to the start class's static main
invokeStaticMain(args.startClass, args.startArgs, classLoader);
}
调用invokeStaticMain方法进一步处理,这个方法还是在RuntimeInit中:
private static void invokeStaticMain(String className, String[] argv, ClassLoader classLoader)
throws ZygoteInit.MethodAndArgsCaller {
Class> cl;
try {
cl = Class.forName(className, true, classLoader);
} catch (ClassNotFoundException ex) {
throw new RuntimeException(
"Missing class when invoking static main " + className,
ex);
}
Method m;
try {
m = cl.getMethod("main", new Class[] { String[].class });
} catch (NoSuchMethodException ex) {
throw new RuntimeException(
"Missing static main on " + className, ex);
} catch (SecurityException ex) {
throw new RuntimeException(
"Problem getting static main on " + className, ex);
}
int modifiers = m.getModifiers();
if (! (Modifier.isStatic(modifiers) && Modifier.isPublic(modifiers))) {
throw new RuntimeException(
"Main method is not public and static on " + className);
}
/*
* This throw gets caught in ZygoteInit.main(), which responds
* by invoking the exception's run() method. This arrangement
* clears up all the stack frames that were required in setting
* up the process.
*/
throw new ZygoteInit.MethodAndArgsCaller(m, argv);
}
这里会抛出异常,也就重新回到了ZygoteInit的main方法中:
Log.i(TAG, "Accepting command socket connections");
runSelectLoop(abiList);
closeServerSocket();
} catch (MethodAndArgsCaller caller) {
caller.run();
} catch (RuntimeException ex) {
Log.e(TAG, "Zygote died with exception", ex);
closeServerSocket();
throw ex;
}
这个时候会调用caller.run();也就是MethodAndArgsCaller中的run方法:
public void run() {
try {
mMethod.invoke(null, new Object[] { mArgs });
} catch (IllegalAccessException ex) {
throw new RuntimeException(ex);
} catch (InvocationTargetException ex) {
Throwable cause = ex.getCause();
if (cause instanceof RuntimeException) {
throw (RuntimeException) cause;
} else if (cause instanceof Error) {
throw (Error) cause;
}
throw new RuntimeException(ex);
}
}
}
接着调用mMethod.invoke方法,也就是Method类中的Invoke方法,这个方法是一本地方法,这个方法就展看了。根据Activity的启动流程来看,发起创建进程的请求的地方在ActivityManagerService中的startProcessLocked方法中,有如下代码:
Process.ProcessStartResult startResult = Process.start(entryPoint,
app.processName, uid, uid, gids, debugFlags, mountExternal,
app.info.targetSdkVersion, app.info.seinfo, requiredAbi, instructionSet,
app.info.dataDir, entryPointArgs);
mMethod.invoke方法中的参数mArgs 是有这里传下去的,感兴趣可以追踪下,总之mMethod.invoke会调用ActivityThread中的main方法。
至此,Zygote进程创建子进程的流程便分析结束。