This is the note of machine learning course on Cousera. I will continuously update this blog.
------------------------------不华丽的分割线-----------------------------------------
* 同学分享了一个网址,包括了这门课程的video,ppt和pdf.
* 鉴于ppt包括了我所有的工作内容。所以直接上网址,这个就不再写啦。
* https://class.coursera.org/ml-005/lecture
----------------------------------------------------------------------------------------------
1. Gradient descent
- be care of the local optimum
-------------------------------------------***********************************---------------------------------------------------------------
-------------------------------------------------*******************************--------------------------------------------
2. Linear Algebra
Cost function for logistic regression is quite different from the one for linear regression.
Cost function 的这个处理技巧很常用。
---------------------------------*****************-------------------------------------------
---------------------------------********************---------------------------------
If we deal with large data, these algorithms are much faster than gradient descent algorithm.
--------------------------------------------*******************---------------------------------------
Multiclass Classification
--------------------------------------------***************-----------------------------------
5. Regularization
Regularization can help to reduce overfitting.
-----------------------------------------------------------------*********************************-----------------------------------------------------
In the real task, it's hard to judge which features are useful. So we will shrink all thetas except theta 0 (actually theta 0 doesn't make a big difference).
----------------------------------------------***********************------------------------------------------
-----------------------------------------------******************************----------------------------------------------------------
Regularized Logistic Regression
6. Neural Networks
终于到NN啦。由于deep learning的火爆,NN也是容光焕发啊。Andrew Ng 在2011年录的课程中,就流露出了对NN的重视,也提到自己在做相关方面的研究。google brain以及他之后的工作和成就,已经有目共睹了。
-----------------------------------------********************************------------------------------------------------------------------
This picture is for vectorization.
---------------------------------------------------------********************************-----------------------------------------------------------------