Kafka+Spark Streaming管理offset的两种方法

Kafka配合Spark Streaming是大数据领域常见的黄金搭档之一,主要是用于数据实时入库或分析。

为了应对可能出现的引起Streaming程序崩溃的异常情况,我们一般都需要手动管理好Kafka的offset,而不是让它自动提交,即需要将enable.auto.commit设为false。只有管理好offset,才能使整个流式系统最大限度地接近exactly once语义。

管理offset的流程

下面这张图能够简要地说明管理offset的大致流程。


Kafka+Spark Streaming管理offset的两种方法_第1张图片
offset管理流程
  • 在Kafka DirectStream初始化时,取得当前所有partition的存量offset,以让DirectStream能够从正确的位置开始读取数据。
  • 读取消息数据,处理并存储结果。
  • 提交offset,并将其持久化在可靠的外部存储中。

图中的“process and store results”及“commit offsets”两项,都可以施加更强的限制,比如存储结果时保证幂等性,或者提交offset时采用原子操作。

图中提出了4种offset存储的选项,分别是HBase、Kafka自身、HDFS和ZooKeeper。综合考虑实现的难易度和效率,我们目前采用过的是Kafka自身与ZooKeeper两种方案。

Kafka自身

在Kafka 0.10+版本中,offset的默认存储由ZooKeeper移动到了一个自带的topic中,名为__consumer_offsets。Spark Streaming也专门提供了commitAsync() API用于提交offset。使用方法如下。

stream.foreachRDD { rdd =>
  val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
  // 确保结果都已经正确且幂等地输出了
  stream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
}

上面是Spark Streaming官方文档中给出的写法。但在实际上我们总会对DStream进行一些运算,这时我们可以借助DStream的transform()算子。

        var offsetRanges: Array[OffsetRange] = Array.empty[OffsetRange]

        stream.transform(rdd => {
            // 利用transform取得OffsetRanges
            offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
            rdd
        }).mapPartitions(records => {
            var result = new ListBuffer[...]()
            // 处理流程
            result.toList.iterator
        }).foreachRDD(rdd => {
            if (!rdd.isEmpty()) {
                // 数据入库
                session.createDataFrame...
            }
            // 提交offset
            stream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
        })

特别需要注意,在转换过程中不能破坏RDD分区与Kafka分区之间的映射关系。亦即像map()/mapPartitions()这样的算子是安全的,而会引起shuffle或者repartition的算子,如reduceByKey()/join()/coalesce()等等都是不安全的。

另外需要注意的是,HasOffsetRangesKafkaRDD的一个trait,而CanCommitOffsetsDirectKafkaInputDStream的一个trait。从spark-streaming-kafka包的源码中,可以看得一清二楚。

private[spark] class KafkaRDD[K, V](
    sc: SparkContext,
    val kafkaParams: ju.Map[String, Object],
    val offsetRanges: Array[OffsetRange],
    val preferredHosts: ju.Map[TopicPartition, String],
    useConsumerCache: Boolean
) extends RDD[ConsumerRecord[K, V]](sc, Nil) with Logging with HasOffsetRanges

private[spark] class DirectKafkaInputDStream[K, V](
    _ssc: StreamingContext,
    locationStrategy: LocationStrategy,
    consumerStrategy: ConsumerStrategy[K, V],
    ppc: PerPartitionConfig
  ) extends InputDStream[ConsumerRecord[K, V]](_ssc) with Logging with CanCommitOffsets {

这就意味着不能对stream对象做transformation操作之后的结果进行强制转换(会直接报ClassCastException),因为RDD与DStream的类型都改变了。只有RDD或DStream的包含类型为ConsumerRecord才行。

ZooKeeper

虽然Kafka将offset从ZooKeeper中移走是考虑到可能的性能问题,但ZooKeeper内部是采用树形node结构存储的,这使得它天生适合存储像offset这样细碎的结构化数据。并且我们的分区数不是很多,batch间隔也相对长(20秒),因此并没有什么瓶颈。

Kafka中还保留了一个已经标记为过时的类ZKGroupTopicDirs,其中预先指定了Kafka相关数据的存储路径,借助它,我们可以方便地用ZooKeeper来管理offset。为了方便调用,将存取offset的逻辑封装成一个类如下。

class ZkKafkaOffsetManager(zkUrl: String) {
    private val logger = LoggerFactory.getLogger(classOf[ZkKafkaOffsetManager])

    private val zkClientAndConn = ZkUtils.createZkClientAndConnection(zkUrl, 30000, 30000);
    private val zkUtils = new ZkUtils(zkClientAndConn._1, zkClientAndConn._2, false)

    def readOffsets(topics: Seq[String], groupId: String): Map[TopicPartition, Long] = {
        val offsets = mutable.HashMap.empty[TopicPartition, Long]
        val partitionsForTopics = zkUtils.getPartitionsForTopics(topics)

        // /consumers//offsets//
        partitionsForTopics.foreach(partitions => {
            val topic = partitions._1
            val groupTopicDirs = new ZKGroupTopicDirs(groupId, topic)

            partitions._2.foreach(partition => {
                val path = groupTopicDirs.consumerOffsetDir + "/" + partition
                try {
                    val data = zkUtils.readData(path)
                    if (data != null) {
                        offsets.put(new TopicPartition(topic, partition), data._1.toLong)
                        logger.info(
                            "Read offset - topic={}, partition={}, offset={}, path={}",
                            Seq[AnyRef](topic, partition.toString, data._1, path)
                        )
                    }
                } catch {
                    case ex: Exception =>
                        offsets.put(new TopicPartition(topic, partition), 0L)
                        logger.info(
                            "Read offset - not exist: {}, topic={}, partition={}, path={}",
                            Seq[AnyRef](ex.getMessage, topic, partition.toString, path)
                        )
                }
            })
        })

        offsets.toMap
    }

    def saveOffsets(offsetRanges: Seq[OffsetRange], groupId: String): Unit = {
        offsetRanges.foreach(range => {
            val groupTopicDirs = new ZKGroupTopicDirs(groupId, range.topic)
            val path = groupTopicDirs.consumerOffsetDir + "/" + range.partition
            zkUtils.updatePersistentPath(path, range.untilOffset.toString)
            logger.info(
                "Save offset - topic={}, partition={}, offset={}, path={}",
                Seq[AnyRef](range.topic, range.partition.toString, range.untilOffset.toString, path)
            )
        })
    }
}

这样,offset就会被存储在ZK的/consumers/[groupId]/offsets/[topic]/[partition]路径下。当初始化DirectStream时,调用readOffsets()方法获得offset。当数据处理完成后,调用saveOffsets()方法来更新ZK中的值。

为什么不用checkpoint

Spark Streaming的checkpoint机制无疑是用起来最简单的,checkpoint数据存储在HDFS中,如果Streaming应用挂掉,可以快速恢复。

但是,如果Streaming程序的代码改变了,重新打包执行就会出现反序列化异常的问题。这是因为checkpoint首次持久化时会将整个jar包序列化,以便重启时恢复。重新打包之后,新旧代码逻辑不同,就会报错或者仍然执行旧版代码。

要解决这个问题,只能将HDFS上的checkpoint文件删掉,但这样也会同时删掉Kafka的offset信息,就毫无意义了。

你可能感兴趣的:(Kafka+Spark Streaming管理offset的两种方法)