A Review of Visual-LiDAR Fusion based Simultaneous Localization and Mapping
先介绍基本SLAM原理,再视觉SLAM,再激光SLAM,最后介绍两者融合SLAM
1、即使V-SLAM提供准确的结果,也存在一些缺陷,如:单目尺度漂移,双目深度估计精度不高,户外RGBD稠密重建困难等。
2、激光雷达主要优点在于测距和制图方面非常准确。
3、使用以上两者融合将大大提升SLAM性能,但是标定和融合事比较困难。
4、标定
5、为了提升V-SLAM的融合:
6、为了提升LiDAR SLAM而融合:
7、并发视觉激光融合:
62.Kassir, A.; Peynot, T. Reliable automatic camera-laser calibration. In Australasian Conference on Robotics and
Automation (ACRA 2010); Wyeth, G., Upcroft, B., Eds.; ARAA: Brisbane, Australia, 2010.
63. Park, K.; Kim, S.; Sohn, K. High-Precision Depth Estimation Using Uncalibrated LiDAR and Stereo Fusion.
IEEE Trans. Intell. Transp. Syst. 2019, 1–15. [CrossRef]
64. Sun, F.; Zhou, Y.; Li, C.; Huang, Y. Research on active SLAM with fusion of monocular vision and laser range
data. In Proceedings of the 2010 8th World Congress on Intelligent Control and Automation, Jinan, China,
7–9 July 2010; pp. 6550–6554.
65. Xu, Y.; Ou, Y.; Xu, T. SLAM of Robot based on the Fusion of Vision and LIDAR. In Proceedings of the 2018
IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, 25–27 October 2018;
pp. 121–126.
66. Guillén, M.; García, S.; Barea, R.; Bergasa, L.; Molinos, E.; Arroyo, R.; Romera, E.; Pardo, S. A Multi-Sensorial
Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied
Environments. Sensors 2017, 17, 802. [CrossRef]
67. Graeter, J.; Wilczynski, A.; Lauer, M. Limo: Lidar-monocular visual odometry. In Proceedings of
the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018; pp. 7872–7879.
68. Shin, Y.S.; Park, Y.S.; Kim, A. Direct visual SLAM using sparse depth for camera-lidar system. In Proceedings
of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018; pp. 1–8.
69. De Silva, V.; Roche, J.; Kondoz, A. Fusion of LiDAR and camera sensor data for environment sensing in
driverless vehicles. arXiv 2018, arXiv:1710.06230.
70. Zhang, Z.; Zhao, R.; Liu, E.; Yan, K.; Ma, Y. Scale Estimation and Correction of the Monocular Simultaneous
Localization and Mapping (SLAM) Based on Fusion of 1D Laser Range Finder and Vision Data. Sensors
2018, 18, 1948. [CrossRef] [PubMed]
71. Scherer, S.; Rehder, J.; Achar, S.; Cover, H.; Chambers, A.; Nuske, S.; Singh, S. River Mapping From a Flying
Robot: State Estimation, River Detection, and Obstacle Mapping. Auton. Robots 2012, 33. [CrossRef]
72. Huang, K.; Xiao, J.; Stachniss, C. Accurate Direct Visual-Laser Odometry with Explicit Occlusion Handling
and Plane Detection. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Montreal, Canada, 20–24 May 2019; pp. 1295–1301. [CrossRef]
73. Liang, X.; Chen, H.; Li, Y.; Liu, Y. Visual laser-SLAM in large-scale indoor environments. In Proceedings
of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China,
3–7 December 2016; pp. 19–24. [CrossRef]
74. Zhu, Z.; Yang, S.; Dai, H.; li, G. Loop Detection and Correction of 3D Laser-Based SLAM with Visual
Information. In Proceedings of the 31st International Conference on Computer Animation and Social Agents,
Caine, USA, 21–23 October 2018; pp. 53–58. [CrossRef]
75. Pandey, G.; McBride, J.; Savarese, S.; Eustice, R. Visually bootstrapped generalized ICP. In Proceedings
of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 2660–2667. [CrossRef]
76. Seo, Y.; Chou, C. A Tight Coupling of Vision-Lidar Measurements for an Effective Odometry. In Proceedings
of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1118–1123. [CrossRef]
77. Zhang, J.; Singh, S. Visual-lidar Odometry and Mapping: Low-drift, Robust, and Fast. In Proceedings of the
2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015;
Volume 2015. [CrossRef]
78. Jiang, G.; Lei, Y.; Jin, S.; Tian, C.; Ma, X.; Ou, Y. A Simultaneous Localization and Mapping (SLAM) Framework for 2.5D Map Building Based on Low-Cost LiDAR and Vision Fusion. Appl. Sci. 2019, 9, 2105.[CrossRef]