深度学习中dropout的理解(转)

参考连接:

https://blog.csdn.net/stdcoutzyx/article/details/49022443

https://blog.csdn.net/program_developer/article/details/80737724

0、对dropout的理解(动机论)


虽然直观上看dropout是ensemble在分类性能上的一个近似,然而实际中,dropout毕竟还是在一个神经网络上进行的,只训练出了一套模型参数。那么他到底是因何而有效呢?这就要从动机上进行分析了。论文中作者对dropout的动机做了一个十分精彩的类比:

在自然界中,在中大型动物中,一般是有性繁殖,有性繁殖是指后代的基因从父母两方各继承一半。但是从直观上看,似乎无性繁殖更加合理,因为无性繁殖可以保留大段大段的优秀基因。而有性繁殖则将基因随机拆了又拆,破坏了大段基因的联合适应性。

但是自然选择中毕竟没有选择无性繁殖,而选择了有性繁殖,须知物竞天择,适者生存。我们先做一个假设,那就是基因的力量在于混合的能力而非单个基因的能力。不管是有性繁殖还是无性繁殖都得遵循这个假设。为了证明有性繁殖的强大,我们先看一个概率学小知识。

比如要搞一次恐怖袭击,两种方式:
- 集中50人,让这50个人密切精准分工,搞一次大爆破。
- 将50人分成10组,每组5人,分头行事,去随便什么地方搞点动作,成功一次就算。

哪一个成功的概率比较大? 显然是后者。因为将一个大团队作战变成了游击战。

那么,类比过来,有性繁殖的方式不仅仅可以将优秀的基因传下来,还可以降低基因之间的联合适应性,使得复杂的大段大段基因联合适应性变成比较小的一个一个小段基因的联合适应性。

dropout也能达到同样的效果,它强迫一个神经单元,和随机挑选出来的其他神经单元共同工作,达到好的效果。消除减弱了神经元节点间的联合适应性,增强了泛化能力。

个人补充一点:那就是植物和微生物大多采用无性繁殖,因为他们的生存环境的变化很小,因而不需要太强的适应新环境的能力,所以保留大段大段优秀的基因适应当前环境就足够了。而高等动物却不一样,要准备随时适应新的环境,因而将基因之间的联合适应性变成一个一个小的,更能提高生存的概率。


**********************************************************************************

1. Dropout简介


1.1 Dropout出现的原因
在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。

过拟合是很多机器学习的通病。如果模型过拟合,那么得到的模型几乎不能用。为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合。此时,训练模型费时就成为一个很大的问题,不仅训练多个模型费时,测试多个模型也是很费时。

综上所述,训练深度神经网络的时候,总是会遇到两大缺点:

(1)容易过拟合

(2)费时

Dropout可以比较有效的缓解过拟合的发生,在一定程度上达到正则化的效果。

 

1.2 什么是Dropout
在2012年,Hinton在其论文《Improving neural networks by preventing co-adaptation of feature detectors》中提出Dropout。当一个复杂的前馈神经网络被训练在小的数据集时,容易造成过拟合。为了防止过拟合,可以通过阻止特征检测器的共同作用来提高神经网络的性能。

在2012年,Alex、Hinton在其论文《ImageNet Classification with Deep Convolutional Neural Networks》中用到了Dropout算法,用于防止过拟合。并且,这篇论文提到的AlexNet网络模型引爆了神经网络应用热潮,并赢得了2012年图像识别大赛冠军,使得CNN成为图像分类上的核心算法模型。

随后,又有一些关于Dropout的文章《Dropout:A Simple Way to Prevent Neural Networks from Overfitting》、《Improving Neural Networks with Dropout》、《Dropout as data augmentation》。

从上面的论文中,我们能感受到Dropout在深度学习中的重要性。那么,到底什么是Dropout呢?

Dropout可以作为训练深度神经网络的一种trick供选择。在每个训练批次中,通过忽略一半的特征检测器(让一半的隐层节点值为0),可以明显地减少过拟合现象。这种方式可以减少特征检测器(隐层节点)间的相互作用,检测器相互作用是指某些检测器依赖其他检测器才能发挥作用。

Dropout说的简单一点就是:我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征,如图1所示。

深度学习中dropout的理解(转)_第1张图片

**********************************************************************************

2. Dropout工作流程及使用

2.1 Dropout具体工作流程

假设我们要训练这样一个神经网络,如图2所示。

深度学习中dropout的理解(转)_第2张图片

输入是x输出是y,正常的流程是:我们首先把x通过网络前向传播,然后把误差反向传播以决定如何更新参数让网络进行学习。使用Dropout之后,过程变成如下:

(1)首先随机(临时)删掉网络中一半的隐藏神经元,输入输出神经元保持不变(图3中虚线为部分临时被删除的神经元)

深度学习中dropout的理解(转)_第3张图片

(2) 然后把输入x通过修改后的网络前向传播,然后把得到的损失结果通过修改的网络反向传播。一小批训练样本执行完这个过程后,在没有被删除的神经元上按照随机梯度下降法更新对应的参数(w,b)。

(3)然后继续重复这一过程:

. 恢复被删掉的神经元(此时被删除的神经元保持原样,而没有被删除的神经元已经有所更新)
. 从隐藏层神经元中随机选择一个一半大小的子集临时删除掉(备份被删除神经元的参数)。
. 对一小批训练样本,先前向传播然后反向传播损失并根据随机梯度下降法更新参数(w,b) (没有被删除的那一部分参数得到更新,删除的神经元参数保持被删除前的结果)。
不断重复这一过程。
 

2.2 Dropout在神经网络中的使用


Dropout的具体工作流程上面已经详细的介绍过了,但是具体怎么让某些神经元以一定的概率停止工作(就是被删除掉)?代码层面如何实现呢?

下面,我们具体讲解一下Dropout代码层面的一些公式推导及代码实现思路。

(1)在训练模型阶段

无可避免的,在训练网络的每个单元都要添加一道概率流程。

深度学习中dropout的理解(转)_第4张图片

深度学习中dropout的理解(转)_第5张图片

 

代码层面实现让某个神经元以概率p停止工作,其实就是让它的激活函数值以概率p变为0。比如我们某一层网络神经元的个数为1000个,其激活函数输出值为y1、y2、y3、......、y1000,我们dropout比率选择0.4,那么这一层神经元经过dropout后,1000个神经元中会有大约400个的值被置为0。

注意: 经过上面屏蔽掉某些神经元,使其激活值为0以后,我们还需要对向量y1……y1000进行缩放,也就是乘以1/(1-p)。如果你在训练的时候,经过置0后,没有对y1……y1000进行缩放(rescale),那么在测试的时候,就需要对权重进行缩放,操作如下。

(2)在测试模型阶段

预测模型的时候,每一个神经单元的权重参数要乘以概率p。

深度学习中dropout的理解(转)_第6张图片

*******************************************************************************

3. 为什么说Dropout可以解决过拟合?


(1)取平均的作用: 先回到标准的模型即没有dropout,我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采用 “5个结果取均值”或者“多数取胜的投票策略”去决定最终结果。例如3个网络判断结果为数字9,那么很有可能真正的结果就是数字9,其它两个网络给出了错误结果。这种“综合起来取平均”的策略通常可以有效防止过拟合问题。因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。dropout掉不同的隐藏神经元就类似在训练不同的网络,随机删掉一半隐藏神经元导致网络结构已经不同,整个dropout过程就相当于对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。

(2)减少神经元之间复杂的共适应关系: 因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况 。迫使网络去学习更加鲁棒的特征 ,这些特征在其它的神经元的随机子集中也存在。换句话说假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的特征。从这个角度看dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高。

(3)Dropout类似于性别在生物进化中的角色:物种为了生存往往会倾向于适应这种环境,环境突变则会导致物种难以做出及时反应,性别的出现可以繁衍出适应新环境的变种,有效的阻止过拟合,即避免环境改变时物种可能面临的灭绝。
 

你可能感兴趣的:(深度学习)