Tensorflow实现CNN手写数字识别

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data",one_hot=True)

# 每个批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size


# 初始化权值
def weight_variable(shape):
    # 生成一个截断的正态分布
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


# 初始化偏置
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


# 卷积层
def conv2d(x,W):
    # x input tensor of shape [batch, in_height, in_width, in_channels]
    # W filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels]
    # in_channels代表输入通道数,out_channels代表输出方向数
    # strides[0] = strides[1] = 0
    # strides[1]代表x方向步长, strides[2]代表y方向步长
    # Padding: "SAME'和"VALID'
    # 'SAME'在外面补零
    return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding = 'SAME')


# 池化层
def max_pool_2x2(x):
    # ksize [1,x,y,1]
    return tf.nn.max_pool(x, ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

# 定义两个占位符
x = tf.placeholder(tf.float32,[None,28*28])
y = tf.placeholder(tf.float32,[None,10])

# 改变x的值为4D向量[batch_size,in_height,in_width,in_channels]
x_image = tf.reshape(x,[-1, 28, 28, 1])

# 初始化第一个卷积层的权值和偏置
W_conv1 = weight_variable([5,5,1,32]) # 5*5采样窗口,32个卷积核从1个平面提取数据
b_conv1 = bias_variable([32]) # 每个卷积核,一个偏置

# 把x_image和权值向量进行卷积,再加上偏置,然后应用于激活函数
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# 进行池化操作
h_pool1 = max_pool_2x2(h_conv1)

# 初始化第二个卷积层的全值和偏置
W_conv2 = weight_variable([5,5,32,64])   # 5*5采样窗口,64个卷积核从32个平面抽取特征
b_conv2 = weight_variable([64]) # 每个卷积核,一个偏置

# 把h_pool1和权值向量进行卷积,再加上偏置,然后应用于激活函数
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# 进行池化操作
h_pool2 = max_pool_2x2(h_conv2)

# 28*28的图片,第一次卷积还是28*28,第一池化变为14*14
# 第二次卷积还是14*14,第二次池化变为7*7
# 通过上面操作,得到64*7*7的平面

# 初始化第一个全连接层的权值
W_fcl = weight_variable([64*7*7,1024]) # 上一张有7*7*64的输入,1024个神经元
b_fcl = bias_variable([1024])

# 将池化后的图片扁平化为一维
h_pool2_flact = tf.reshape(h_pool2,[-1,7*7*64])
# 求第一个全连接层的输出
h_fcl = tf.nn.relu(tf.matmul(h_pool2_flact, W_fcl) + b_fcl)

# keep_prob 用来表示神经元的输出概率
keep_prob = tf.placeholder(tf.float32)
h_fcl_drop =tf.nn.dropout(h_fcl, keep_prob)

# 初始化第二个全连接层 1024个输入,10个输出
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])

# 计算输出
prediction = tf.nn.softmax(tf.matmul(h_fcl_drop,W_fc2) + b_fc2)

# 交叉熵代价函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))

# 使用优化器进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for epoch in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step, feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})
            if batch%100 ==0:
                print(str(batch)+"/"+str(n_batch))
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
        print("Iter " + str(epoch) +" Test Accuracy " + str(acc))


你可能感兴趣的:(算法)