- Caffe学习系列——工具篇:计算数据集的图像均值
Solomon1588
计算机视觉CVCaffe深度学习深度学习Caffe数据预处理特征标准化
本系列文章介绍深度学习框架Caffe及其实践,本文主要介绍Caffe的实用工具——compute_image_mean计算图像均值.1.图像预处理——零均值化数据预处理在深度学习中非常重要,数据预处理中,标准的第一步是数据归一化。特征归一化常用的方法包含如下几种:简单缩放逐样本均值消减(也称为移除直流分量)特征标准化(使数据集中所有特征都具有零均值和单位方差)特征标准化指的是(独立地)使得数据的每
- Caffe学习 (五):SSD源码解读ssd_pascal.py
QZX-light
Caffe学习系列Caffe
参考博客:https://blog.csdn.net/xunan003/article/details/79089280from__future__importprint_functionimportcaffefromcaffe.model_libsimport*fromgoogle.protobufimporttext_formatimportmathimportosimportshutilim
- caffe学习(1)------windows下基于GPU配置
lishanlu136
caffecaffe
最近准备用caffe做图片的分类,可配置caffe就让我折腾了大半个月,一直配置不成功,最后还是参考官网的tutorial才配置成功,于是决定把配置的过程写下来,如果后面有朋友配置caffe遇到什么问题,还可以参考参考。首先贴出官方的配置caffe的工程:https://github.com/BVLC/caffe/tree/windows,注意,这可是基于Windows系统的,因为我的电脑是win
- caffemodel特征可视化_Caffe学习笔记4图像特征进行可视化
weixin_39824801
caffemodel特征可视化
Caffe学习笔记4图像特征进行可视化本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing/可以算是对它的翻译的总结吧,它可以算是学习笔记2的一个发展,2是介绍怎么提取特征,这是介绍怎么可视化特征1、准备工作首先
- Caffe学习:build/tools/convert_imageset
jiarenyf
caffecaffe
caffe/build/tools/convert_imageset用于将image图片转化为lmdb(leveldb)格式编写命令,实现图片格式转化:#!bin/sh#工具目录TOOLS_ROOT=caffe/build/tools#train_datas存放训练图片#label_train.txt保存图片标签#shuffle参数用于打乱图片读取顺序#train_db文件夹(不可手动新建)存放转
- Caffe学习之——caffe.cpp源码解析
ciky奇
caffecaffe.cpp
本文主要解析caffe源码中/tools/caffe.cpp文件,此文件是caffe程序的入口main函数,包含了命令行参数代码实现,如tain,test,time等。caffe结构请参考:https://blog.csdn.net/c20081052/article/details/80585888caffe命令行参数请参考:https://blog.csdn.net/c20081052/art
- caffe学习(1):多平台下安装配置caffe
weixin_34238642
操作系统运维git
如何在centos7.3上安装caffe深度学习工具有好多朋友在安装caffe时遇到不少问题。(看文章的朋友希望关心一下我的创业项目趣智思成)今天测试并整理一下安装过程。我是在阿里云上测试,选择centos7.3镜像。先安装epel源1yuminstallepel-release安装基本编译环境12yuminstallprotobuf-develleveldb-develsnappy-develo
- Caffe学习笔记1-安装以及代码结构
baobei0112
CNN卷积神经网络
Caffe学习笔记1-安装以及代码结构ByYuFeiGan2014-12-09更新日期:2014-12-09安装按照官网教程安装,我在OSX10.9和Ubuntu14.04上面都安装成功了。主要麻烦在于gloggflagsgtest这几个依赖项是google上面的需要。由于我用Mac没有CUDA,所以安装时需要设置CPU_ONLY:=1。如果不是干净的系统,安装还是有点麻烦的比如我在OSX10.9
- caffe学习笔记--写一个运行caffe.cpp的makefile
thystar
caffe学习
之前因为有caffe的项目要放到服务器上面,但是其实不需要在服务器上面重新安装caffe,所以写了个makefile.这里改写了个简单的,比较容易读的,只运行caffe.cpp,如果由其他的,可以按照makefile的规则添加就好。首先,还是要说一下关于caffe的依赖,参考之前的两篇博客:http://blog.csdn.net/thystar/article/details/51179064和
- caffe学习笔记10.1--Fine-tuning a Pretrained Network for Style Recognition(new)
thystar
caffe学习
在之前的文章里,写过一个关于微调的博客,但是今天上去发现这部分已经更新了http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/02-fine-tuning.ipynb,因此补一篇最新的,关于微调,前面的文章由讲,参考http://blog.csdn.net/thystar/article/details/5067553
- caffe学习笔记(11):多任务学习之HDF5Data类型数据集生成
guyunee
deeplearningmatlabobjectdetection数据标签caffe深度学习
最近开始研究多任务学习(multi-tasklearning,MTL),先分享给大家:本文主要讲述数据集的建立,HDF5Data类型用于处理多标签数据,在网络中定义为:layer{name:"data"type:"HDF5Data"top:"data"top:"label"include{phase:TRAIN}hdf5_data_param{source:"list_train.txt"batc
- Caffe学习:Forward and Backward
jiarenyf
caffecaffe
原文forwardandbackwardpasses(前向迭代和反向迭代)是Net最基本的成分。下面以简单的logisticregressionclassifier(逻辑回归分类器)为例。ForwardPass(前向迭代)利用给定的输入,根据模型设定的函数,计算出输出。Thispassgoesfrombottomtotop(数据流向从bottom到top)。数据x通过一个innerproductl
- Ubuntu14.04下配置Caffe+OpenCV2.4.10+CUDA7.5+cuDNN5.1.10
cuihaolong
3DPrint系统配置
1.CUDA配置与Tensorflow,Keras等深度学习框架一样的配置方法,一次配置可以重用,其他基础软件和依赖项亦可参考:Caffe学习笔记2--Ubuntu14.0464bit安装Caffe(GPU版本)Ubuntu14.04+Caffe+Cuda7.5+Opencv3.0安装教程Caffe+Ubuntu14.0464bit+CUDA6.5配置说明Caffe搭建:Ubuntu14.04+C
- Caffe学习笔记(一): 训练和测试自己的数据集
__Sunshine__
笔记Pythoncaffe训练数据集计算机视觉
1数据准备首先在caffe根目录下建立一个文件夹myfile,用于存放数据文件和后面的caffe模型相关文件。然后在myfile文件夹下建立build_lmdb和datatest两个文件夹,其中build_lmdb文件夹用于存放生成的lmdb文件,datatest文件夹存放图片数据。在datatest下主要有2个文件夹和2个.sh文件和2个.txt文件,其中train文件夹中存放待训练的图片,va
- Caffe学习(三)Caffe模型的结构
遍地流金
Caffe学习
一总体结构在caffe中,解决一个问题首先应该定义一个slover,反应到mnist例程中也就是lenet_solver.prototxt。该slover主要包括两部分,(1)为网络模型model,(2)为该模型参数的具体optimization方法及参数。model主要由各种layer组成,主要包括数据相关的DataLayer,图像滤波变换相关的VisionLayer,非线性激活函数Activa
- caffe数据文件lmdb训练神器digits
hi我是大嘴巴
denny的学习专栏徐其华博客园首页新随笔联系管理订阅随笔-145文章-0评论-1085Caffe学习系列(21):caffe图形化操作工具digits的安装与运行经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化。如果还没有学会的,请自行细细阅读:caffe学习系列:http://www.cnblogs.com/den
- Caffe学习总结(一)——初识caffe
不系之舟913
深度学习caffe深度学习机器学习框架
深度学习在当前情况下可以用一个字来形容“火”,目前项目中使用到了常用的机器学习算法,在使用过程中发现图像的特征提取成为识别的瓶颈,无意中了解到caffe,可以很好的解决特征提取的问题。于是想尝试一下caffe的威力。初识caffe,就习惯性了想了解下作者,发现设计作者是贾杨清,终于发现一个牛逼的框架是我们中国人做的啦!于是很兴奋,很想深入的进行学习,希望能在工作中使用起来。1、caffe的由来到一
- 深度学习之----caffe
Steven_ycs
本文主要讲解caffe的整个使用流程,适用于初级入门caffe,通过学习本篇博文,理清项目训练、测试流程。初级教程,高手请绕道。我们知道,在caffe编译完后,在caffe目录下会生成一个build目录,在build目录下有个tools,这个里面有个可执行文件caffe,如下图所示:有了这个可执行文件我们就可以进行模型的训练,只需要学会调用这个可执行文件就可以了,这便是最简单的caffe学习,不需
- caffe学习系列二:源码深入解析-单步跟踪调试指南
singularpt
为了更好的学习caffe,我们利用上节安装好的环境,进行单步调试,以窥caffe全貌。准备工作:要在vs2013中单步跟踪调试caffe,需要配置caffe工程,打开【属性】-【调试】-【命令行参数】中加入输入参数。如下配置:image.png先贴一张caffe的整体处理流程:image.png一、函数入口众所周知,caffe由c++写的,而c++的入口函数为main,我们在caffe.cpp文件
- Ubuntu 14.04下编译OpenPose
crazyhank
OpenPose是CMU开发的一个开源人体姿态检测模型,github地址为:https://github.com/CMU-Perceptual-Computing-Lab/openpose,下面为在ubuntu14.04版本上编译的过程下载源码由于openpose依赖于第三方的caffe学习框架,所以在gitclone一定要加上"--recursive"选项,如下所示:#gitclone--rec
- Caffe学习笔记6:过程小结
Zz鱼丸
之前写的学习笔记1用两种方法进行预测,今天发现有点不对。下面进行分析总结:先来看看Classifier的源代码#!/usr/bin/envpython"""ClassifierisanimageclassifierspecializationofNet."""importnumpyasnpimportcaffeclassClassifier(caffe.Net):"""Classifierexte
- Caffe Cifar10模型测试及可视化
不会积
本文主体来自[Caffe学习系列(17):模型各层数据和参数可视化],加了一点自己的注释(http://www.cnblogs.com/denny402/p/5105911.html)先用caffe对cifar10进行训练,将训练的结果模型进行保存,得到一个caffemodel,然后从测试图片中选出一张进行测试,并进行可视化。#加载必要的库importnumpyasnpimportmatplotl
- Caffe学习系列(3):视觉层(Vision Layers)及参数
weixin_33850890
matlab人工智能
所有的层都具有的参数,如name,type,bottom,top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数本文只讲解视觉层(VisionLayers)的参数,视觉层包括Convolution,Pooling,LocalResponseNormalization(LRN),im2col等层。1、Convolution层:就是卷积层,是卷积神经网络(C
- Caffe学习之一:Caffe的配置和编译
sherry_gp
程序软件安装
最近,在学习deeplearning,使用的工具就是caffe,比较容易上手,不啰嗦了,先说环境的配置和编译。系统的平台为win10+matlab2014b+vs2013.在开始之前,要安装cuda的驱动,我使用的cuda7.5这个版本(为了和caffe里面使用的版本同步)。首先,在https://github.com/happynear/caffe-windows下载caffe和以及此页面上提供
- 【深度学习框架Caffe学习与应用】第四课 Caffe可视化工具
soldier123333
[caffe学习笔记]
1.首先准备pycaffe环境输入一下命令:2.网络可视化的工具2.1在caffe中,有一个专门用于画网络结构图的py文件:caffe/tools/draw_net.py2.2也可以通过在线可视化工具,网址如下:http://ethereon.github.io/netscope/#/editor2.caffemodel的可视化,需要先把代码看明白,这里不写了3.特征图的可视化4.loss和acc
- 【深度学习框架Caffe学习与应用】 第十一课
soldier123333
[caffe学习笔记]
1.车辆检测实践:使用Caffe训练的深度学习模型做目标检测——以车辆检测为例有关文件都放在以下文件夹中:对vehicle_detetc.cpp进行编译:编译之前,需要修改一下代码中的文件路径:我刚开始先编译之后,才修改的源文件,所以运行的时候,出现下面错误:只要修改完路径之后,重新编译就好结果如下图所示:效果不好,有误检
- 【深度学习框架Caffe学习与应用】第五课 自定义神经层和数据输入层
soldier123333
[caffe学习笔记]
一、自定义神经层1.创建新定义的头文件,目录在caffe/include/caffe/layers/my_neuron_layer.hpp我复制了conv_layer.hpp文件,然后在该文件的内容上进行更改如果只是需要CPU方法,可以注释掉forward_gpu和backward_gpu修改对照内容如下(左侧是conv_layer.hpp,右侧是my_neuron_layer.hpp):2.创建
- 【深度学习框架Caffe学习与应用】第三课 使用训练好的模型
soldier123333
[caffe学习笔记]
1.均值文件将所有训练样本的均值保存为文件。首先将计算均值文件的caffe工具compute_image_mean放到当前目录:caffe/test/mnist/下面,之后运行如下命令:这样,我们的均值文件就生成了2.改写deploy文件(以mnist为例)(略过)3.使用修改后的mnist的deploy文件,输入一张图片,输出分类结果首先我们写了一个test_mnist.cpp文件,先进行编译,
- Caffe学习笔记11:Ubuntu 16.04 中 caffe 编译出现的错误——fatal error: hdf5.h: 没有那个文件或目录
weixin_41774576
Caffe
step1:cd/usr/lib/x86_64-linux-gnusudoln-slibhdf5_serial.so.8.0.2libhdf5.sosudoln-slibhdf5_serial_hl.so.8.0.2libhdf5_hl.sostep2:changeMakefile.config//打开Makefile.config将下面的INCLUDE_DIRS:=$(PYTHON_INCLUD
- caffe学习-代码阅读DataLayer
华山汉灵
编程-深度学习框架
以下摘录自《深度学习轻松学》冯超为了能够尽可能地提高训练速度,DataLayer采用了异步准备数据的形式,数据读人的工作和模型训练的工作在各自的线程中进行,相互独立并不依赖。当模型需要数据时,只需要将数据复制到指定的内存中即可。从lmdb数据库中,Cusror逐一获取数据,然后构成batch,经过transform变换后,是实际训练用的data.最上面的虚线框是DataReader类,负责从DB中
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu