[python]leetcode(309). Best Time to Buy and Sell Stock with Cooldown

problem

Say you have an array for which the ith element is the price of a
given stock on day i.

Design an algorithm to find the maximum profit. You may complete as
many transactions as you like (ie, buy one and sell one share of the
stock multiple times) with the following restrictions:

You may not engage in multiple transactions at the same time (ie, you
must sell the stock before you buy again). After you sell your stock,
you cannot buy stock on next day. (ie, cooldown 1 day)

Example:

prices = [1, 2, 3, 0, 2]
maxProfit = 3
transactions = [buy, sell, cooldown, buy, sell]

solution1

这种序列优化问题通常使用动态规划的解法,这里特殊的地方在于它有三种状态,而一般的序列优化问题只有两种,例如最长递增子序列问题中,每一个元素又有被选择和未被选择两种,所以这个问题的递推过程要稍微复杂一些。

我的解法如下:

class Solution(object):
    def maxProfit(self, prices):
        """
        :type prices: List[int]
        :rtype: int
        """

        def helper(prices, start, dp):
            if len(prices) < 2:
                return 0
            ans = 0
            for i in range(start, len(prices)):
                for j in range(i + 1, len(prices)):
                    if dp[j+2] != -1:
                        ans = max(ans, prices[j] - prices[i] + dp[j+2])
                    else:
                        ans = max(ans, prices[j] - prices[i] + helper(prices, j+2, dp))
            dp[start] = ans

            return ans

        dp = [-1] * (len(prices)+2)
        return helper(prices, 0, dp)

这个解法的思想就是把原来起始为0的序列转化为prices[i]买入,prices[j]卖出,加上j+2起始的序列最大值。这样我们就可以写出递推方程了。

这样的时间复杂度为 O(n3)

solution2

对于这种多状态问题可以使用多个数组来记录不同的状态为结尾的最优值。

令sell[i] 表示第i天未持股时,获得的最大利润,buy[i]表示第i天持有股票时,获得的最大利润。

这样就可以进行递推了,
buy[i] = max(sell[i-2] - price, buy[i-1])
sell[i] = max(buy[i-1] + price, sell[i-1])

这样的时间复杂度为 O(n) ,同时由于递推过程最多只用到前两天的数据,所以时间复杂度为 O(1)

总结

虽然都是动态规划,但是选择好变量表示状态,然后找出递推方程很重要。

对于多状态的问题可以分状态表示多个相互递推的方程组。

你可能感兴趣的:(算法,python,leetcode)