java 根据经纬度计算实际距离

经纬度,表面的含义就是经纬度的平方和,然后开平方。。。一切都没问题。。

 

但问题不是简单的二维平面,在二维空间中,这样计算是没有问题。。。

 

但是。。。。。

 

百度上找了找,大概有三种方式,一个是根据反余弦,一个是根据sin和cosin,第三个是根据提供的一个第三方jar包计算的。。。。

 

反余弦

具体分析在这里

https://blog.csdn.net/jk940438163/article/details/83147557#commentsedit

package com.zhiliyuchi.web.rest.util;

/**
 * @创建人:Young
 * @时 间: 2019/3/13
 * @描 述: TODO
 */
public class Test {
    private static final double EARTH_RADIUS = 6371393; // 平均半径,单位:m;不是赤道半径。赤道为6378左右

    /**
     * @描述 反余弦进行计算
     * @参数  [lat1, lng1, lat2, lng2]
     * @返回值  double
     * @创建人  Young
     * @创建时间  2019/3/13 20:31
     **/
    public static double getDistance(Double lat1,Double lng1,Double lat2,Double lng2) {
        // 经纬度(角度)转弧度。弧度用作参数,以调用Math.cos和Math.sin
        double radiansAX = Math.toRadians(lng1); // A经弧度
        double radiansAY = Math.toRadians(lat1); // A纬弧度
        double radiansBX = Math.toRadians(lng2); // B经弧度
        double radiansBY = Math.toRadians(lat2); // B纬弧度

        // 公式中“cosβ1cosβ2cos(α1-α2)+sinβ1sinβ2”的部分,得到∠AOB的cos值
        double cos = Math.cos(radiansAY) * Math.cos(radiansBY) * Math.cos(radiansAX - radiansBX)
            + Math.sin(radiansAY) * Math.sin(radiansBY);
//        System.out.println("cos = " + cos); // 值域[-1,1]
        double acos = Math.acos(cos); // 反余弦值
//        System.out.println("acos = " + acos); // 值域[0,π]
//        System.out.println("∠AOB = " + Math.toDegrees(acos)); // 球心角 值域[0,180]
        return EARTH_RADIUS * acos; // 最终结果
    }
    public static void main(String[] args) {
        //121.717594,31.12055    121.817629,31.090867
        double distance = getDistance(31.12055, 121.717594,
            31.090867, 121.817629);
        System.out.println("距离" + distance  + "米");
    }
}

 

sin/cosin

package com.zhiliyuchi.web.rest.util;

/**
 * @创建人:Young
 * @时 间: 2019/3/13
 * @描 述: 高德地图对应经纬度计算距离
 */
public class LocationUtils {
    // 地球赤道半径
    private static double EARTH_RADIUS = 6378.137;

    private static double rad(double d) {
        return d * Math.PI / 180.0;
    }

    /**
     * @描述 经纬度获取距离,单位为米
     * @参数  [lat1, lng1, lat2, lng2]
     * @返回值  double
     * @创建人  Young
     * @创建时间  2019/3/13 20:33
     **/
    public static double getDistance(double lat1, double lng1, double lat2,
                                     double lng2) {
        double radLat1 = rad(lat1);
        double radLat2 = rad(lat2);
        double a = radLat1 - radLat2;
        double b = rad(lng1) - rad(lng2);
        double s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a / 2), 2)
            + Math.cos(radLat1) * Math.cos(radLat2)
            * Math.pow(Math.sin(b / 2), 2)));
        s = s * EARTH_RADIUS;
        s = Math.round(s * 10000d) / 10000d;
        s = s * 1000;
        return s;
    }

    public static void main(String[] args) {
        double distance = getDistance(31.12055, 131.717594,
            21.090867, 111.817629);
        System.out.println("距离" + distance + "米");
    }

}

 

第三方jar包

maven库导包

        
              org.gavaghan
              geodesy
              1.1.3
        

 

package com.zhiliyuchi.web.rest.util;

import org.gavaghan.geodesy.Ellipsoid;
import org.gavaghan.geodesy.GeodeticCalculator;
import org.gavaghan.geodesy.GeodeticCurve;
import org.gavaghan.geodesy.GlobalCoordinates;

/**
 * @创建人:Young
 * @时 间: 2019/3/13
 * @描 述: TODO
 */
public class test0 {
    public static void main(String[] args)
    {
        // //121.717594,31.12055    121.817629,31.090867
        GlobalCoordinates source = new GlobalCoordinates(31.12055, 121.717594);
        GlobalCoordinates target = new GlobalCoordinates(31.090867, 121.817629);

        double meter1 = getDistanceMeter(source, target, Ellipsoid.Sphere);
        double meter2 = getDistanceMeter(source, target, Ellipsoid.WGS84);

        System.out.println("Sphere坐标系计算结果:"+meter1 + "米");
        System.out.println("WGS84坐标系计算结果:"+meter2 + "米");
    }

    public static double getDistanceMeter(GlobalCoordinates gpsFrom, GlobalCoordinates gpsTo, Ellipsoid ellipsoid)
    {
        //创建GeodeticCalculator,调用计算方法,传入坐标系、经纬度用于计算距离
        GeodeticCurve geoCurve = new GeodeticCalculator().calculateGeodeticCurve(ellipsoid, gpsFrom, gpsTo);

        return geoCurve.getEllipsoidalDistance();
    }
}

进入jar中的源码

{
        double a = ellipsoid.getSemiMajorAxis();
        double b = ellipsoid.getSemiMinorAxis();
        double f = ellipsoid.getFlattening();
        double phi1 = Angle.toRadians(start.getLatitude());
        double lambda1 = Angle.toRadians(start.getLongitude());
        double phi2 = Angle.toRadians(end.getLatitude());
        double lambda2 = Angle.toRadians(end.getLongitude());
        double a2 = a * a;
        double b2 = b * b;
        double a2b2b2 = (a2 - b2) / b2;
        double omega = lambda2 - lambda1;
        double tanphi1 = Math.tan(phi1);
        double tanU1 = (1.0D - f) * tanphi1;
        double U1 = Math.atan(tanU1);
        double sinU1 = Math.sin(U1);
        double cosU1 = Math.cos(U1);
        double tanphi2 = Math.tan(phi2);
        double tanU2 = (1.0D - f) * tanphi2;
        double U2 = Math.atan(tanU2);
        double sinU2 = Math.sin(U2);
        double cosU2 = Math.cos(U2);
        double sinU1sinU2 = sinU1 * sinU2;
        double cosU1sinU2 = cosU1 * sinU2;
        double sinU1cosU2 = sinU1 * cosU2;
        double cosU1cosU2 = cosU1 * cosU2;
        double lambda = omega;
        double A = 0.0D;
        double B = 0.0D;
        double sigma = 0.0D;
        double deltasigma = 0.0D;
        boolean converged = false;

        for(int s = 0; s < 20; ++s) {
            double lambda0 = lambda;
            double sinlambda = Math.sin(lambda);
            double coslambda = Math.cos(lambda);
            double sin2sigma = cosU2 * sinlambda * cosU2 * sinlambda + (cosU1sinU2 - sinU1cosU2 * coslambda) * (cosU1sinU2 - sinU1cosU2 * coslambda);
            double sinsigma = Math.sqrt(sin2sigma);
            double cossigma = sinU1sinU2 + cosU1cosU2 * coslambda;
            sigma = Math.atan2(sinsigma, cossigma);
            double sinalpha = sin2sigma == 0.0D?0.0D:cosU1cosU2 * sinlambda / sinsigma;
            double alpha = Math.asin(sinalpha);
            double cosalpha = Math.cos(alpha);
            double cos2alpha = cosalpha * cosalpha;
            double cos2sigmam = cos2alpha == 0.0D?0.0D:cossigma - 2.0D * sinU1sinU2 / cos2alpha;
            double u2 = cos2alpha * a2b2b2;
            double cos2sigmam2 = cos2sigmam * cos2sigmam;
            A = 1.0D + u2 / 16384.0D * (4096.0D + u2 * (-768.0D + u2 * (320.0D - 175.0D * u2)));
            B = u2 / 1024.0D * (256.0D + u2 * (-128.0D + u2 * (74.0D - 47.0D * u2)));
            deltasigma = B * sinsigma * (cos2sigmam + B / 4.0D * (cossigma * (-1.0D + 2.0D * cos2sigmam2) - B / 6.0D * cos2sigmam * (-3.0D + 4.0D * sin2sigma) * (-3.0D + 4.0D * cos2sigmam2)));
            double C = f / 16.0D * cos2alpha * (4.0D + f * (4.0D - 3.0D * cos2alpha));
            lambda = omega + (1.0D - C) * f * sinalpha * (sigma + C * sinsigma * (cos2sigmam + C * cossigma * (-1.0D + 2.0D * cos2sigmam2)));
            double change = Math.abs((lambda - lambda0) / lambda);
            if(s > 1 && change < 1.0E-13D) {
                converged = true;
                break;
            }
        }

        double var96 = b * A * (sigma - deltasigma);
        double alpha1;
        double alpha2;
        if(!converged) {
            if(phi1 > phi2) {
                alpha1 = 180.0D;
                alpha2 = 0.0D;
            } else if(phi1 < phi2) {
                alpha1 = 0.0D;
                alpha2 = 180.0D;
            } else {
                alpha1 = 0.0D / 0.0;
                alpha2 = 0.0D / 0.0;
            }
        } else {
            double radians = Math.atan2(cosU2 * Math.sin(lambda), cosU1sinU2 - sinU1cosU2 * Math.cos(lambda));
            if(radians < 0.0D) {
                radians += 6.283185307179586D;
            }

            alpha1 = Angle.toDegrees(radians);
            radians = Math.atan2(cosU1 * Math.sin(lambda), -sinU1cosU2 + cosU1sinU2 * Math.cos(lambda)) + 3.141592653589793D;
            if(radians < 0.0D) {
                radians += 6.283185307179586D;
            }

            alpha2 = Angle.toDegrees(radians);
        }

        if(alpha1 >= 360.0D) {
            alpha1 -= 360.0D;
        }

        if(alpha2 >= 360.0D) {
            alpha2 -= 360.0D;
        }

        return new GeodeticCurve(var96, alpha1, alpha2);
    }

 

大同小异。。但是好像地球半径给的是

 

有点儿疑惑了。。。各需所求吧。。。

 

TIPS:

有一点,数据中地球的半径的值直接导致了后面计算的差异,所以,是取赤道,取平均,还是精确到指定的经纬度,酌情考虑。。。。

 

你可能感兴趣的:(日常问题)