- QKeras、Brevitas和QONNX量化工具对比
kanhao100
笔记深度学习边缘计算
QKeras、Brevitas和QONNX量化工具对比一、引言在深度学习模型部署领域,量化技术已成为提升模型执行效率的关键手段。通过将浮点权重转换为低精度表示,量化能显著减小模型体积、降低内存占用并加速推理过程。对于资源受限的设备(如移动设备、嵌入式系统和边缘计算设备),量化技术尤为重要。本文深入对比三款主流量化工具:QKeras、Brevitas和QONNX,从用户实际应用角度剖析它们的技术特点
- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- 关于重投影误差小记
文弱_书生
乱七八糟数码相机算法
重投影误差(ReprojectionError)讲解1.什么是重投影误差?在三维重建或相机标定过程中,我们希望将一个世界坐标系中的三维点投影到相机的图像平面上。理想情况下,该点的投影位置应该与实际图像中的观测点(如特征点)完全匹配,但由于噪声、相机模型的不准确性或优化算法的误差,这两个点可能会有偏差。重投影误差就是这个偏差的度量,即:e=∥pobserved−preprojected∥e=\|p_
- 关于离子滤波小记
文弱_书生
乱七八糟人工智能计算机视觉算法
粒子滤波(ParticleFilter,PF)粒子滤波是一种基于蒙特卡洛方法的贝叶斯滤波算法,主要用于解决非线性、非高斯的状态估计问题。它广泛应用于机器人定位、目标跟踪、金融建模等领域。1.粒子滤波的基本概念粒子滤波的核心思想是用一组加权的**随机样本(粒子)**来近似后验概率分布,而非采用卡尔曼滤波那样的参数化分布假设(如高斯分布)。设系统的状态模型如下:xk=f(xk−1,uk,wk)x_k=
- 旋转位置编码(Rotary Positional Encoding, RoPE):中文公式详解与代码实现
RockLiu@805
深度学习模块人工智能自然语言处理语言模型深度学习
旋转位置编码(RotaryPositionalEncoding,RoPE):中文公式详解与代码实现在序列模型中,位置信息对于任务的理解至关重要。传统的绝对和相对位置编码各有优缺点,而RoPE作为一种创新的位置编码方法,展现了其独特的优势。RoPE的核心思想RoPE通过旋转机制动态地捕捉位置信息。它允许查询(query)和键(key)向量的旋转程度根据它们之间的相对或绝对位置自动调整。这种方法使模型
- 目标检测中归一化的目的?
林语微光
kaggle目标检测目标跟踪人工智能
在目标检测任务中,归一化坐标和尺寸时需要除以图像的宽度和高度,主要有以下几个原因:1.统一尺度不同图像可能具有不同的宽度和高度。通过将坐标和尺寸除以图像的宽度和高度,可以将所有图像的标注信息统一到相同的尺度范围([0,1])。这使得模型在训练和推理时能够处理任意尺寸的图像,而不需要关心图像的具体像素尺寸。2.位置和尺寸的相对性归一化后的坐标和尺寸是相对于图像尺寸的,而不是绝对像素值。这种相对性使得
- 关于神经网络中的正则化
文弱_书生
乱七八糟神经网络人工智能深度学习
神经网络训练中的正则化正则化(Regularization)是神经网络训练中的一个关键技术,主要用于防止模型过拟合(overfitting),提高泛化能力。1.为什么需要正则化?在神经网络训练过程中,模型的目标是找到能在训练数据上表现良好的参数,同时也能泛化到未见过的数据。如果一个模型过于复杂(如参数过多、层数过深),它可能会记住训练数据中的噪声,而不是学习数据的本质模式。这种情况称为过拟合(ov
- Python异步编程 - asyncio库
孤寒者
Python全栈系列教程python异步编程asyncioyield协程
目录:每篇前言:异步IOPython中的异步编程实现方式:协程Python传统协程示例:实现生产者-消费者模型消费者:生产者:运行流程:整体流程:传统协程——>现代协程:asyncio库async/await每篇前言:作者介绍:【孤寒者】—CSDN全栈领域优质创作者、HDZ核心组成员、华为云享专家Python全栈领域博主、CSDN原力计划作者本文已收录于爬虫必备前端技术栈专栏:《爬虫必备前端技术栈
- ElasticSearch Java查询实现详解
当牛作馬
ElasticSearch使用elasticsearchjavajenkins
文章目录前言一、环境准备二.连接到ElasticSearch三.实现各种查询1匹配查询(MatchQuery)2术语查询(TermQuery)3范围查询(RangeQuery)4复合查询(BoolQuery)5.术语聚合(TermsAggregation)5.平均值聚合(AvgAggregation)6.最大值聚合(MaxAggregation)与最小值聚合(MinAggregation)7.日期
- 传统金融和分布式金融
倒霉男孩
DeFi金融分布式
文章目录传统金融和分布式金融一、传统金融机构的核心问题深度剖析1.支付与清算系统的结构性缺陷2.金融排斥(FinancialExclusion)的根源3.中心化风险的爆发与传导二、DeFi的技术突破与创新机制1.支付与清算:区块链的底层重构2.普惠金融的技术民主化3.去中心化治理与透明化运作三、DeFivs传统金融的范式革命1.价值传递范式的颠覆2.风险分散机制的升级3.经济模型的创新实验四、De
- 双指针之滑动窗口
旧念25
算法数据结构
滑动窗口是双指针的一种所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。给定一个含有n个正整数的数组和一个正整数s,找出该数组中满足其和≥s的长度最小的连续子数组,并返回其长度。如果不存在符合条件的子数组,返回0。示例:输入:s=7,nums=[2,3,1,2,4,3]输出:2解释:子数组[4,3]是该条件下的长度最小的子数组暴力解法两层for循环嵌套,第一层for循
- 谷歌:对比学习将LLM转为嵌入模型
大模型任我行
大模型-成熟基座人工智能自然语言处理语言模型论文笔记
标题:GeminiEmbedding:GeneralizableEmbeddingsfromGemini来源:arXiv,2503.07891摘要在本报告中,我们介绍了Gemini嵌入,这是一种最先进的嵌入模型,它利用了Gemini、Google最有能力的大型语言模型的力量。利用Gemini固有的多语言和代码理解能力,GeminiEmbedding为跨越多种语言和文本模式的文本生成高度可概括的嵌入
- 第三十篇 维度建模:从理论到落地的企业级实践
随缘而动,随遇而安
数据库sql数据仓库大数据数据库架构
目录一、维度建模核心理论体系1.1Kimball方法论四大支柱1.2关键概念对比矩阵二、四步建模法全流程解析2.1选择业务过程(以电商为例)2.2声明原子粒度(订单案例)2.3维度设计规范时间维度(含财年逻辑)SCDType2完整实现(Hudi)2.4事实表类型与设计三、企业级建模实战:电商用户分析3.1业务矩阵分析3.2模型实现代码四、高级建模技巧4.1多星型模式关联4.2大数据场景优化五、性能
- 【人工智能机器学习基础篇】——深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理
猿享天开
人工智能数学基础专讲人工智能机器学习无监督学习降维
深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理在当今数据驱动的世界中,数据维度的增多带来了计算复杂性和存储挑战,同时也可能导致模型性能下降,这一现象被称为“维度诅咒”(CurseofDimensionality)。降维作为一种重要的特征提取和数据预处理技术,旨在通过减少数据的维度,保留其主要信息,从而简化数据处理过程,并提升模型的性能。本文将深入探讨两种广泛应用于无监督学习中的降
- 一、大语言模型微调 vs. 大语言模型应用
AI Echoes
深度学习人工智能deepseek机器学习算法
一、大语言模型微调vs.大语言模型应用1.微调(Fine-Tuning)的含义与特点定义与作用微调指在预训练好(通用)的基础模型上,通过在特定领域或任务的数据集上进一步训练来调整模型参数,使其在该领域任务中获得更优表现。这种方法可以使通用模型“定制化”,更好地理解专业术语和领域知识,从而提升准确性和响应质量。例如,为医疗、法律、金融等垂直领域构建专属模型,往往需要在预训练模型基础上进行微调。特点参
- AI界劳斯莱斯o1 -Pro来了!百万token收费600刀,OpenAI在AI普惠反方向狂奔?
算家计算
话题文章人工智能算家云OpenAIo1-proAPIOpenAI发布最贵模型DeepSeek
刚刚,OpenAI宣布推出其最新的高性能推理模型o1-pro。当大家还在为GPT-4.5的订阅费感到肉痛时,OpenAI用一记价格暴击刷新了认知——全新推理模型o1-pro的API定价,输入每百万token收费150美元,输出每百万token收费600美元,比前代模型贵了10倍,更是将DeepSeek-R1甩出270倍价差。与OpenAI其他模型相比,o1-pro的价格高出了不止一点:目前o1-p
- 模型上下文协议 (MCP)是什么?Model Context Protocol 需要你了解一下
同学小张
学习AIGCAI-nativeagigpt开源协议
大家好,我是同学小张,+v:jasper_8017一起交流,持续学习AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,订阅我的大模型专栏,共同学习和进步。在人工智能领域,ModelContextProtocol(MCP)正逐渐成为连接AI模型与各类数据源及工具的重要标准。MCP究竟为何物?它又将如何改变AI应用的开发与使用?文章目录0.概念1.MCP的总体架构2.为何使用MCP?3.我的理解4
- MCP服务器:AI智能体的新时代连接标准
真挺乐
人工智能
在AI技术的不断发展中,MCP(ModelContextProtocol,模型上下文协议)正成为AI智能体与外部系统交互的新标准。MCP的目标是提供一个统一的方法,让AI智能体能够安全、高效地访问各种数据源、API接口和系统工具,从而扩展其能力,提升智能化水平。本文将深入探讨MCP服务器的架构、优势及其在现实世界中的应用。什么是MCP服务器?MCP服务器是MCP架构中的关键组件,它们充当AI智能体
- ollama 基本使用教程
海上彼尚
AIai前端
目录1.安装OllamamacOS或LinuxWindows(WSL2)2.基础命令启动与停止更新Ollama3.模型管理下载预训练模型运行模型查看已安装模型删除模型从Modelfile创建自定义模型4.高级功能服务器模式与API多会话管理环境变量配置5.常见问题与技巧加速模型下载查看日志模型参数调整模型导出与分享Ollama是一个开源的大型语言模型服务工具,能够帮助用户在本地运行大模型。通过简单
- java Spring Boot ruoyi-vue-pro 模型接入微软 OpenAI(chatgpt)方法
代码简单说
开发必备2025开发必备java若依ruoyi教程javaspringbootvue.jsruoyi-vue-proopenaichatgpt大模型
javaSpringBootruoyi-vue-pro模型接入微软OpenAI方法本项目基于SpringAI提供的spring-ai-azure-openai,实现与微软Azure上部署的OpenAI的接入,涵盖AI对话和AI绘画功能。1.申请密钥1.1AzureAPI申请在微软AzureAI申请。社区小伙伴提供过密钥接入,申请流程应不复杂。申请完成后会得到类似模型列表(如图)。购买完成后,在系统
- 【新品发售】NVIDIA 发布全球最小个人 AI 超级计算机 DGX Spark
segmentfault
GTC2025大会上,NVIDIA正式推出了搭载NVIDIAGraceBlackwell平台的个人AI超级计算机——DGXSpark。赞奇可接受预订,直接私信后台即刻预订!DGXSpark(前身为ProjectDIGITS)支持AI开发者、研究人员、数据科学家和学生,在台式电脑上对大模型进行原型设计、微调和推理。用户可以在本地运行这些模型,或将其部署在NVIDIADGXCloud或任何其他加速云或
- 如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介
人工智能机器学习大模型llm
背景:为什么需要一个「裁判员大语言模型」?随着大模型(LLM)技术的爆发式应用,如何快速、客观评估模型回复质量成为行业痛点。对于回答客观问题的LLM,目前业内已经有比较成熟的数据集进行效果评测与模型打榜。但是如何对一个开放式生成LLM进行效果评估,尤其在知识问答、客服对话、内容合规、RAG(检索增强生成)等场景中,目前主流的评测方式仍存在一定的局限性:人工标注:成本高昂、效率低下;传统的自动化评估
- 13 异常处理的使用大全
希望_睿智
C++基础知识精讲c++windowsc语言开发语言异常处理
概述异常是指程序在执行的过程中,没有按照预定的流程和逻辑去运行,从而导致数组越界、内存溢出、甚至程序崩溃等各种非正常的情况。在C++、Java和C#等高级语言中,都提供了对于异常的处理机制。异常处理,实际上是一种转移程序控制权的方式。当程序中抛出了异常时,我们可以捕获异常,进而进行相应的处理。处理模型一般有两种:一种是终止模型,表示该异常是致命的,无法恢复,会直接终止程序;另一种是恢复模型,表示该
- Pydantic配置继承抽象基类模式
title:Pydantic配置继承抽象基类模式date:2025/3/21updated:2025/3/21author:cmdragonexcerpt:Pydantic模型配置系统支持通过嵌套Config类定义字段校验、序列化等行为。配置继承需显式指定父类Config,子类可覆盖或扩展配置项。动态配置管理允许运行时通过工厂函数创建带特定设置的模型,支持热更新验证规则。企业级架构中采用基类配置继
- 《深度剖析:BERT与GPT——自然语言处理架构的璀璨双星》
人工智能深度学习
在自然语言处理(NLP)的广袤星空中,BERT(BidirectionalEncoderRepresentationsfromTransformers)与GPT(GenerativePretrainedTransformer)系列模型宛如两颗最为耀眼的星辰,引领着NLP技术不断迈向新的高度。它们基于独特的架构设计,以强大的语言理解与生成能力,彻底革新了NLP的研究与应用范式,成为学界和业界竞相探索
- 密码学协议在SSL/TLS证书体系中的深度解析
安全
摘要:本文从密码学协议演进视角,系统剖析SSL/TLS证书体系的实现机理与安全边界。聚焦TLS1.3协议标准,揭示椭圆曲线密码体制(ECC)与混合密钥交换机制的协同运作,探讨证书透明度(CT)系统的密码学验证模型,并构建后量子时代数字证书的迁移路径框架。一、SSL/TLS协议栈的密码学架构演进X.509证书的密码学基因由PKI体系决定,其信任锚点植根于CA机构的数字签名算法选择。TLS1.3协议废
- 基于MATLAB路径规划仿真 轨迹规划,船舶轨迹跟踪控制,数学模
985计算机硕士
仿真模型matlab开发语言
MATLAB路径规划仿真轨迹规划,船舶轨迹跟踪控制,数学模MATLAB路径规划仿真轨迹规划,船舶轨迹跟踪控制,数学模型基于两轮差速的小车模型,用PID环节对航向角进行控制,迫使小车走向目标,或用PID环节对航向角和距离进行控制,迫使小车走向目标LQR算法可自行小车起点坐标文章目录初始化环境定义PID控制函数运行仿真代码说明:代码示例代码说明:为了实现基于两轮差速模型的小车在MATLAB中的路径规划
- 基于Matlab_simulink仿真相关 控制算法、优化算法相关帮助代做,原理讲解
985计算机硕士
仿真模型matlab算法开发语言
Matlab/simulink仿真相关控制算法、优化算法相关帮助代做,原理讲解:1.优化算法相关:蚁群优化算法,遗传优化算法等2.控制器相关:ADRC控制,鲁棒控制,神经网络控制,MPC等3.神经网络相关:BP神经网络,RBF神经网络,LSTM神经网络等文章目录1.优化算法相关蚁群优化算法(ACO)2.控制器相关ADRC控制3.神经网络相关BP神经网络1.构建光伏系统模型1.1光伏电池模型1.2控
- RabbitMQ 与 Kafka:消息中间件的终极对比与选型指南
海上彼尚
node.jsrabbitmqkafka分布式node.js
引言在分布式系统架构中,消息中间件是异步通信的核心组件。RabbitMQ和Kafka作为两大主流技术,常被开发者拿来比较。本文深入解析两者的设计哲学、性能差异和典型场景,助你做出精准技术选型。目录引言一、核心设计差异1.定位与数据模型二、性能与架构对比1.吞吐量与延迟2.集群与扩展三、功能特性对决1.消息可靠性2.消息路由四、典型场景与选型决策1.优先选择Kafka的场景2.优先选择RabbitM
- Marker可以快速且准确地将PDF转换为markdown格式。
星霜笔记
开源关注简介免费源码pdf
MarkerMarker可以快速且准确地将PDF转换为markdown格式。支持多种文档类型(针对书籍和科学论文进行了优化)支持所有语言移除页眉/页脚/其他杂质格式化表格和代码块提取并保存图像以及markdown将大多数方程转换为latex支持在GPU、CPU或MPS上运行工作原理Marker是一个由深度学习模型组成的管道:提取文本,必要时进行OCR处理(启发式算法,surya,tesseract
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>