存储器管理

存储器管理

1 程序的装入和链接
2 连续分配存储管理方式
3 分页存储管理方式
4 分段存储管理方式
5 虚拟存储器、请求分页/分段、页面置换算法

一、存储器的层次结构

存储器管理_第1张图片

1. 主存储器
主存储器简称内存或主存。由于主存储器的访问速度远低于 CPU 执行指令的速度,为缓和这一矛盾,在计算机系统中引入了寄存器和高速缓存。
2.寄存器
寄存器具有与处理机相同的速度。主要用于存放处理机运行时的数据。如用寄存器存放操作数,或用作地址寄存器加快地址转换速度等。
**3.高速缓存 **
高速缓存是介于寄存器和存储器之间的存储器,主要用于备份主存中较常用的数据。其容量远大于寄存器,而比内存约小两到三个数量级左右。
**4.磁盘缓存 **
它本身并不是一种实际存在的存储介质,而是利用主存中的部分存储空间暂存从磁盘中读出(或写入)的信息。

二、程序的装入和链接

1)编译,由编译程序将用户源代码编译成若干个目标模块。
2)链接,由链接程序将编译后形成的一组目标模块,以及它们所需要的库函数链接在一起,形成一个完整的装入模块。
3)装入,由装入程序将装入模块装入内存。
程序的装入

绝对装入方式。
可重定位装入方式。
动态运行时装入方式。

程序的链接

静态链接方式。
装入时动态链接。
运行时动态链接。

三、连续分配存储管理方式

单一连续分配

只能用于单道程序环境下,整个内存的用户空间由一个程序独占。

固定分区分配

把内存分为一些大小相等或不等的分区(partition),每个应用进程占用一个分区。操作系统占用其中一个分区。
提高:支持多个程序并发执行,适用于多道程序系统和分时系统。最早的多道程序存储管理方式。
划分为几个分区,便只允许几道作业并发。

1)划分分区的方法
分区大小相等、分区大小不等。
2)需要的数据结构
建立一记录相关信息的分区表(或分区链表),表项有:
| 起始位置 | 大小 | 状态 |
分区表中,表项值随着内存的分配和释放而动态改变

3)程序分配内存的过程:
也可将分区表分为两个表格:空闲分区表/占用分区表。从而减小每个表格长度。
检索算法:空闲分区表可能按不同分配算法采用不同方式对表项排序(将分区按大小排队或按分区地址高低排序)。
过程:检索空闲分区表;找出一个满足要求且尚未分配的分区,分配给请求程序;若未找到大小足够的分区,则拒绝为该用户程序分配内存。

4) 固定分配的不足:
内碎片(一个分区内的剩余空间)造成浪费
分区总数固定,限制并发执行的程序数目。

动态分区分配
分区的大小不固定:在装入程序时根据进程实际需要,动态分配内存空间,即——需要多少划分多少。
空闲分区表项:从1项到n项:
内存会从初始的一个大分区不断被划分、回收从而形成内存中的多个分区。

优点:并发进程数没有固定数的限制,不产生内碎片。
缺点:有外碎片(分区间无法利用的空间)

1、动态分区分配中的数据结构。
常用的数据结构有以下两种形式:
1)空闲分区表:
记录每个空闲分区的情况。
每个空闲分区对应一个表目,包括分区序号、分区始址及分区的大小等数据项。
2)空闲分区链:
每个分区的起始部分,设置用于控制分区分配的信息,及用于链接各分区的前向指针;
分区尾部则设置一后向指针,在分区末尾重复设置状态位和分区大小表目方便检索。

顺序式搜索算法、索引式搜索算法。

分区分配操作

1)分配内存
找到满足需要的合适分区,划出进程需要的空间
if s<=size,将整个分区分配给请求者
if s> size,按请求的大小划出一块内存空间分配出去,余下部分留在空闲链中,将分配区首址返回给调用者。
2)回收内存
进程运行完毕释放内存时,系统根据回收区首址a,在空闲分区链(表)中找到相应插入点,根据情况修改空闲分区信息,可能会进行空闲分区的合并:

3)回收分区
(1)回收区(首址a)与一个分区f1末尾(首址b+大小)邻接:将回收区与f1合并,修改f1的表项的分区大小
(2)回收区(首址a+大小)与一个分区f2的首址b邻接:将回收区与f2合并,修改f2的表项的首址、分区大小
(3) (1)(2)两种情况都有,则将回收区与前后两个分区F1、F2邻接:将三个分区合并,使用F1的表项和F1的首址,取消F2的表项,大小为三者之和
(4) 回收区没有邻接的分区:为回收区单独建立新表项,填写回收区的首址与大小,根据其首址插到空闲链中的适当位置

基于顺序搜索的动态分区分配算法

顺序搜索,是指依次搜索空闲分区链上的空闲分区,去寻找一个其大小能满足要求的分区。
碎片:内存空间不断被划分,会留下许多难以利用的、很小的空闲分区。

1、首次适应算法。
空闲分区排序:以地址递增的次序链接。
检索:分配内存时,从链首开始顺序查找直至找到一个大小能满足要求的空闲分区;
分配:从该分区中划出一块作业要求大小的内存空间分配给请求者,余下的空闲分区大小改变仍留在空闲链中。
若从头到尾检索不到满足要求的分区则分配失败
优点:优先利用内存低址部分,保留了高地址部分的大空闲区;
缺点:但低址部分不断划分,会产生较多小碎片;而且每次查找从低址部分开始,会逐渐增加查找开销。

2、循环首次适应算法。
空闲分区排序:按地址
检索:从上次找到的空闲分区的下一个空闲分区开始查找,直到找到一个能满足要求的空闲分区。为实现算法,需要:

   设置一个起始查寻指针
   采用循环查找方式

分配:分出需要的大小
优点:空闲分区分布均匀,减少查找开销
缺点:缺乏大的空闲分区

3、最佳适应算法。
总是把能满足要求、又是最小的空闲分区分配给作业,空闲分区排序:所有空闲分区按容量从小到大排序成空闲分区表或链。
检索:从表或链的头开始,找到的第一个满足的就分配
分配:分出需要的大小
缺点:每次找到最合适大小的分区割下的空闲区也总是最小,会产生许多难以利用的小空闲区(外碎片)

4、最坏适应算法
基本不留下小空闲分区,但会出现缺乏较大的空闲分区的情况。

基于索引搜索的动态分区分配算法

1、快速适应算法
根据进程常用空间大小进行划分,相同大小的串成一个链,需管理多个各种不同大小的分区的链表。进程需要时,从最接近大小需求的链中摘一个分区。类似的:伙伴算法
能快速找到合适分区,但链表信息会很多;实际上是空间换时间。
2、伙伴系统
分区大小有规定,且分区动态变化
1、无论已分配还是空闲分区,大小都为2的k此幂。若整个可分配空间大小为2m,则1≤k≤m.
2、随着系统运行,内存被不断划分,形成若干不连续的空闲分区。对每一类具有相同大小的空闲分区设置一双向链表,即会有k个链表,链表中的分区大小都是2m。
3、进程申请n个大小的空间时,计算n= 2i。则找i对应的链表。若i大小的链表没有,则找i+1的链表。找到的分区对半划分后,一半用于分配,一半链接到较小一级的链表里去。
4、一次分配和回收都可能对应多次的划分和合并。
3、哈希算法

动态可重定位分区分配

1、紧凑。
通过移动内存中作业的位置,以把原来多个分散的小分区拼接成一个大分区的方法,称为“拼接”或“紧凑”。由于经过紧凑后的某些用户程序在内存中的位置发生了变化。为此,在每次“紧凑”后,都必须对移动了的程序或数据进行重定位。
2、动态重定位。
在动态运行时装入的方式中,作业装入内存后的所有地址都仍然是相对(逻辑)地址,将相对地址转换为物理地址的工作,被推迟到程序指令要真正执行时进行。
地址变换过程是在程序执行期间,随着对每条指令或数据的访问借助重定位寄存器自动进行的,故称为动态重定位。
3、动态重定位分区分配算法。
动态重定位分区分配算法与动态分区分配算法基本上相同,差别仅在于:在这种分配算法中,增加了紧凑的功能。

内存空间管理之对换

把内存中暂时不能运行、或暂时不用的程序和数据调到外存上,以腾出足够的内存;把已具备运行条件的进程和进程所需要的程序和数据,调入内存。
按对换单位分类:
1、整体对换(或进程对换):以整个进程为单位(连续分配)
2、页面对换或分段对换:以页或段为单位(离散分配)
对换空间的管理
存储器管理_第2张图片
对换空间的分配与回收是连续方式,与动态分区方式时的内存分配与回收雷同。
在系统中设置相应的数据结构以记录对换区的使用情况
常用对换方案:内存紧张进程缺页率高时运行,所有进程缺页率已明显减少,系统吞吐量已下降时,即可暂停运行对换程序

分页存储管理方式

基于允许将一个进程直接分散地装入到许多不相邻接的分区中,则无须再进行“紧凑” 的思想而产生了离散分配方式。分为以下三种:
1)分页存储管理方式:将用户程序的地址空间分为若干个固定大小的区域,称为“页”或者“页面”。也将内存空间分为若干个物理块或页框,页和框的大小相同。
2)分段存储管理方式:把用户程序的地址空间分为若干个大小不同的段。分配以段为单位。
3)段页式存储管理方式:是分页和分段两种存储方式相结合的产物。

离散分配内存:
作业规定大小划分成小份;内存也按同样大小划分成小份
作业的任一小份可分散放入内存任意未使用的小份

分页存储管理的基本方法
分页方式下,内存的使用率高,浪费少。但不是绝对没有碎片(进程的最后一页不总是能占满一个物理块)

页面和物理块。
1)页面:将一个进程的逻辑地址空间分成若干个大小相等的片,称为页面或页,并为各页加以编号。相应地,也把内存的物理空间分成若干个块,并为各块加以编号。在为进程分配内存时,以块为单位将进程中的若干个页分别装入到多个可以不相邻接的物理块中。由于进程的最后一页经常装不满一块而形成了不可利用的碎片,称之为“页内碎片”。
2)页面大小:页面的大小应选择适中,且页面大小应是 2 的幂,通常为 1 KB~8 KB。

页表。
为保证进程的正确运行,即能在内存中找到每个页面所对应的物理块。为此,系统又为每个进程建立了一张页面映像表,简称页表。

计算过程
作业相对地址在分页下不同位置的数有一定的意义结构:
页号+页内地址(即页内偏移)
关键的计算是:根据系统页面大小找到不同意义二进制位的分界线。
从地址中分析出页号后,地址映射只需要把页号改为对应物理块号,偏移不变,即可找到内存中实际位置。
存储器管理_第3张图片

地址变换机构

实现从逻辑地址到物理地址的转换。地址变换任务是借助于页表来完成的。

基本的地址变换机构。
页表大多驻留在内存中。在系统中只设置一个页表寄存器 PTR,在其中存放页表在内存的始址和页表的长度。平时,进程未执行时,页表的始址和页表长度存放在本进程的 PCB 中。当调度程序调度到某进程时,才将这两个数据装入页表寄存器中。因此,在单处理机环境下,虽然系统中可以运行多个进程,但只需一个页表寄存器。
地址变换过程
分页系统中,进程创建,放入内存,构建页表,在PCB中记录页表存放在内存的首地址及页表长度。
1.运行某进程A时,将A进程PCB中的页表信息写入PTR中;
2.每执行一条指令时,根据分页计算原理,得到指令页号X和内部偏移量Y;
3.CPU高速访问PTR找到页表在哪里;
4.查页表数据,得到X实际对应存放的物理块,完成地址映射计算,最终在内存找到该指令。

具有快表的地址变换机构。

为了提高地址变换速度,可在地址变换机构中增设一个具有并行查寻能力的特殊高速缓冲寄存器,又称为“联想寄存器”,或称为“快表”,在 IBM 系统中又取名为 TLB,用以存放当前访问的那些页表项

访问内存的有效时间

从进程发出指定逻辑地址的访问请求,经过地址变换,到在内存中找到对应的实际物理地址单元并取出数据,所需要花费的总时间,称为内存的有效访问时间(EAT)。

假设访问一次内存的时间为t,在基本分页存储管理方式中,有效访问时间分为第一次访问内存时间(即查找页表对应的页表项所耗费的时间t)与第二次访问内存时间(即访问页表项中的物理块号与页内地址所拼接成的实际物理地址所耗费的时间t)之和: EAT = t + t = 2t;

在快表中查找到所需表项存在着命中率的问题。所谓命中率,是指使用快表并在其中成功查找到所需页面的表项的比率。
则:EAT = а×λ + (t+λ)(1-а) + t = 2t + λ - t×а;
上式中,λ表示查找快表所需要的时间,а表示命中率,t表示访问一次内存所需要的时间。

两级和多级页表

页表占用相当大的内存空间解决方法:
(1) 对于页表所需的内存空间,可采用离散分配方式来解决难以找到一块连续的大内存空间的问题;
(2) 只将当前需要的部分页表项调入内存,其余的页表项仍驻留在磁盘上,需要时再调入。

两级页表
将页表进行分页,为离散分配的页表再建立一张页表,称为外层页表,在每个页表项中记录了页表页面的物理块号。
存储器管理_第4张图片

多级页表。
对于 32 位的机器,采用两级页表结构是合适的;但对于 64 位的机器,必须采用多级页表,将外层页表再进行分页。

反置页表

一张OS 反置页表 + 每进程一张外部页表

反置页表(Inverted Page Tale):站在物理块的角度,记录占用它的已调入内存的进程标识和页号。系统中只需一张该表即可。一个64MB内存,若页面大小4KB(64M/4K=2^16=16K个物理块),反置页表占用64KB(16K*4B)

进程外部页表(External Page Table):每个进程一张,记录进程不在内存中的那些页面所在的外存物理位置。

如何提高检索反置页表速度:内存容量大时,反置页表的页表项还是会很大,利用进程标识符和页号去检索一张大的线性表很费时,可利用hash算法提高检索速度。

分段存储管理方式

引入分段存储管理方式的目的,则主要是为了满足用户(程序员)在编程和使用上多方面的要求。

分段存储管理方式的特点

1、方便编程。
2、信息共享。
3、信息保护。
4、动态增长。
5、动态链接。

分段系统的基本原理

程序通过分段(segmentation)划分为多个模块,每个段定义一组逻辑信息。如代码段(主程序段main,子程序段X)、数据段D、栈段S等。

编译程序(基于源代码)决定一个程序分几段,每段多大

段的特点

  1. 每段有自己的名字(一般用段号做名),都从0编址,可分别编写和编译。装入内存时,每段赋予各段一个段号。
  2. 每段占据一块连续的内存。(即有离散的分段,又有连续的内存使用)
  3. 各段大小不等。

段表。
段表连续的存放在内存中。每个段在表中占有一个表项,记录了该段在内存中的起始地址(又称为“基址”)和段的长度。
段表是用于实现从逻辑段到物理内存区的映射。
地址变换机构。
存储器管理_第5张图片

分段和分页的主要区别

1、需求:分页是出于系统管理的需要,是一种信息的物理划分单位,分段是出于用户应用的需要,是一种逻辑单位,通常包含一组意义相对完整的信息。
2、一条指令或一个操作数可能会跨越两个页的分界处,而不会跨越两个段的分界处。
3、大小:页大小是系统固定的,而段大小则通常不固定。分段没有内碎片,但连续存放段产生外碎片,可以通过内存紧缩来消除。相对而言分页空间利用率高。
4、逻辑地址:
分页是一维的,各个模块在链接时必须组织成同一个地址空间;
分段是二维的,各个模块在链接时可以每个段组织成一个地址空间。
5、其他:通常段比页大,因而段表比页表短,可以缩短查找时间,提高访问速度。分段模式下,还可针对不同类型采取不同的保护;按段为单位来进行共享

信息共享

分页系统中对程序和数据的共享。
虽然也能实现对程序和数据的共享,但远不如分段系统来得方便。
分段系统中对程序和数据的共享。
可重入代码又称为“纯代码”,是一种允许多个进程同时访问的代码。可重入代码是一种不允许任何进程对它进行修改的代码。但事实上,大多数代码在执行时都可能有些改变。为此,在每个进程中,都必须配以局部数据区,把在执行中可能改变的部分拷贝到该数据区,这样,程序在执行时,只需对该数据区(属于该进程私有)中的内容进行修改,并不去改变共享的代码,这时的可共享代码即成为可重入码。

段页式存储管理方式

在这里插入图片描述
存储器管理_第6张图片

你可能感兴趣的:(第四章,操作系统)