- 【机器学习理论基础】一文看尽朴素贝叶斯算法
大数据AI
MachineLearning机器学习
在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。对于大多数的分类算法,比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数Y=f(X)Y=f(X)Y=f(X),要么是条件分布P(Y∣X)P(Y|X)P(Y∣X)。但是朴素贝叶斯却是生成方法,也就是直接找出特征输出YYY和特征XXX的联合分布P(X,Y)P(X
- 【机器学习第十二章——计算学习理论】
方寸星河yu
机器学习人工智能
机器学习第十二章——计算学习理论12.计算学习理论12.1基础知识12.1可能学习近似正确假设(PAC)12.3有限假设空间12.4VC维12.计算学习理论12.1基础知识从理论上刻画了若干类型的机器学习问题中的困难和若干类型的机器学习算法的能力这个理论要回答的问题是:在什么样的条件下成功的学习是可能的?在什么条件下某个特定的学习算法可保证成功运行?机器学习理论的一些问题:是否可能独立于学习算法确
- 一篇文章预览数据挖掘比赛入门
MycountryMyhome
很多学习机器学习的同学来参加数据挖掘比赛,发现数据挖掘比赛和自己学过的机器学习理论完全不一致.所以,我决定写一篇入门文章给那些新人。必须掌握的库scikit-learnscipyseabornmatplotlibpandasHyperopt特征分类:连续数字特征序数特征类别特征时间特征坐标特征文本特征序数特征:定义为无限循环有限个数字。比如某一列只有123类别特征:类别特征和序数特征相似只不过表现
- [笔记]机器学习之机器学习理论及案例分析《二》 聚类
二进制怪兽
人工智障聚类机器学习算法
#21天学习挑战赛—机器学习#活动地址:CSDN21天学习挑战赛文章目录前言聚类聚类定义什么是簇聚类分类离群点聚类算法实例K-Means算法(k-均值算法)寻找质心最佳位置关于均值关于距离函数维度灾难定义产生的问题解决办法总结前言聚类聚类是在无标记样本的条件下将数据进行分组,从而发现天然的结构。聚类是无监督学习的主要任务,分类是监督学习的主要任务。聚类主要应用在:发现数据的潜在结构对数据进行自然分
- Python数据分析的入门路线
皮皮大
最近发现了一个自学Python数据分析的好地方,这里的原创文章高达200+篇,大家一起来看看,可以关注学习起来喔❤️公众号的原创文章涉及:Python数据分析、爬虫、机器学习、kaggle案例分享、MySQL、可视化等,下面是部分原创文章:一、机器学习+kaggle案例机器学习和数据分析案例分享是尤而小屋的核心内容,主要包含机器学习理论+kaggle比赛+数据分析的分享:机器学习(1)部分关于机器
- 【机器学习理论】2023 Spring 期中考试 CSCI5030 Midterm
叼辣条闯天涯
机器学习理论机器学习人工智能
Date&Time:16/03/2023,12:30-2:00pmQuestion1(True/False,20Points):Forthisquestion,youneedtoanswerwhichofthefollowingstatementsaretrueandwhichonesarefalse.Youalsoneedtoprovideashortexplanationforyourtrue
- 【机器学习理论】2023 Spring Homework 1
叼辣条闯天涯
机器学习理论机器学习概率论人工智能
PleaselogintoGradescopeviayourCUHKaccountandusetheentrycode:6ZWGYDProblem1(GaussianDistributionasanExponentialFamily):WeshowedGaussiandistributionN(μ,σ2)\mathcal{N}\left(\mu,\sigma^{2}\right)N
- 【机器学习理论】人工神经网络之神经元的MP模型
Li Yuexi
机器学习理论神经网络人工智能机器学习人工智能神经网络
神经元的MP模型1神经元的生理结构2神经元的数学模型2.1从生理结构到MP模型的构建过程2.2MP模型的直观图示2.3MP模型的标准形式2.4MP模型的向量形式2.5小结3MP模型的加权求和的数学意义4总结人工神经网络是人工智能仿生学派的一大创造,人工神经网络的诞生极大地受到人体内的真实的神经元的生理结构的启发,并且最初的神经元的数学模型就是仿照真实的神经元的结构来设计的,所以在介绍神经元的MP模
- 【机器学习理论】2023 Spring 期末考试 CSCI5030 Finalterm
叼辣条闯天涯
机器学习理论机器学习人工智能
CSCI5030:FinalSolutionsDate&Time:May4,2:00-4:00pmQuestion1(True/False,20Points):Forthisquestion,youneedtoanswerwhichofthefollowingstatementsaretrueandwhichonesarefalse.Youalsoneedtoprovideashortexplan
- 适合进阶学习的 机器学习 开源项目(可快速下载)
GitCode官方
开源项目学习机器学习开源
目录开源项目合集[>>开源的机器学习平台:mlflow/mlflow](https://gitcode.com/mlflow/mlflow)[>>机器学习路线图:mrdbourke/machine-learning-roadmap](https://gitcode.com/mrdbourke/machine-learning-roadmap)[>>机器学习理论和实践的合集:ben1234560/A
- 2020-07-23计算学习理论
BOLDRainbow
1.章节主要内容机器学习理论(computationallearningtheory)研究的是关于通过“计算”来进行“学习”的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法提供理论保证,并根据分析结果指导算法设计。这章内容相对比较抽象,它关注的更多是算法能产生的数据与结果之间的映射与实际映射的贴近程度和稳定程度,而不是具体的算法的优劣。这是一个在更高层面审视机器学习算法
- Python数据挖掘与机器学习实践技术应用
思考的小猴子
机器学习python数据挖掘机器学习
近年来,Python编程语言受到越来越多科研人员的喜爱,在多个编程语言排行榜中持续夺冠。同时,伴随着深度学习的快速发展,人工智能技术在各个领域中的应用越来越广泛。机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。为各领域人员量身定制课程内容,让你畅学Python编程及机器学习理论与代码实现方法,从“
- 初步认识cortex(CTXC)
hp_6482
一、资料1、白皮书(EN)http://www.cortexlabs.ai/Cortex_AI_on_Blockchain_EN.pdf2、官方网站(EN)http://www.cortexlabs.ai/3、团队+顾问CEO——陈子祺,清华大学、卡耐基梅隆大学、加州大学圣克鲁斯分校学习。在早期的学习经历中,师从DavidP.Helmbold研究机器学习理论和各种算法应用,精通共识算法和共有链生态
- 8.1 有监督学习算法
adamlay
大课笔记——数据分析
有监督学习算法0.机器学习理论基础根据酒精浓度、颜色深度判断红酒类别常用机器学习算法体系有监督学习无监督学习半监督学习强化学习输入/输出空间、特征空间过拟合与欠拟合1.KNN/K近邻算法1.1算法原理1.2算法的优缺点1.3算法的变种1.4Python代码实现1.5SCIKIT-LEARN算法库实现主要设计原则:案例1.6选择最优K值绘制学习曲线1.7交叉验证1.7.1泛化能力1.7.2K折交叉验
- 对偶理论:基本概念札记
三翼鸟数字化技术团队
人工智能机器学习算法
1.前言在读论文或者学习机器学习理论时,常常看到对偶的身影。但因为对对偶问题的理解不够透彻,在看机器学习理论相关理论时也是懵懵懂懂。所以本文整理了对偶理论的基本概念,帮助理解记忆。本文主要描述:优化问题的标准形式,即原问题的基本定义;介绍Lagragian函数,Lagrage对偶函数/对偶函数,Lagrage对偶问题/对偶问题等基本概念;介绍将原问题转化为对偶问题的方法。优化问题的标准形式(原问题
- 一、大数据与机器学习-概述-笔记
火蓝棋
大数据机器学习-笔记
一、什么是机器学习?机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。二、机器学习应用场景举例1.Gam
- TensorFlow03-实现线性回归
__流云
deftest01_liner():#用numpy生成100个点x_data=np.random.rand(100)y_data=x_data*0.1+0.2#构造一个线程模型#k:斜率;b:偏置值b=tf.Variable(0.)k=tf.Variable(0.)y=k*x_data+b#定义二次方差损失函数,用于优化计算结果,机器学习理论部分#求得预测值和实际值的平方差,用于判断计算结果的损失
- 机器学习和python学习之路吐血整理技术书从入门到进阶(珍藏版)
rocling
人工智能人工智能
极客侠网站导航(全部书单资源导航页):https://pymlovelyq.github.io/archives/“机器学习/深度学习并不需要很多数学基础!”也许你在不同的地方听过不少类似这样的说法。对于鼓励数学基础不好的同学入坑机器学习来说,这句话是挺不错的。不过,机器学习理论是与统计学、概率论、计算机科学、算法等方面交叉的领域,对这些技术有一个全面的数学理解对理解算法的内部工作机制、获取好的结
- 001、torch笔记
Here we are——wxl
torch笔记
之——开始目录之——开始初衷杂谈正文1.大致框架2.数据操作基础2.1数组2.2广播机制2.4不常用的原地内存操作2.5numpy与tensor相互转换所属专栏会不断更新初衷学而时习之,太多东西来得杂乱,不用就忘,浅记一下,一些小的心得和想法杂谈2023.10.3,笑死是生日不过新的一年开始也很不错本科阶段学了很多模式识别机器学习理论,多部署少研究和编写,现在刚开始系统化动手。用上了jupyter
- 基于支持向量机 (SVM) 和稀疏表示理论 (SRC) 的人脸识别比较
西部小狼_
一背景1.1支持向量机简介支持向量机(SupportVectorMachine,SVM)是AT&TBell实验室的V.Vapnik等人提出的一种机器学习算法,是迄今为止最重要的机器学习理论和方法之一,也是应用最广泛、综合效果最好的模式分类技术之一。到目前为止,支持向量机已应用于孤立手写字符识别、网页或文本自动分类、说话人识别、人脸检测、性别分类、计算机入侵检测、基因分类、遥感图象分析、目标识别、函
- python 知乎 sklearn_sklearn:Python语言开发的通用机器学习库
weixin_39723678
python知乎sklearn
深入理解机器学习并完全看懂sklearn文档,需要较深厚的理论基础。但是,要将sklearn应用于实际的项目中,只需要对机器学习理论有一个基本的掌握,就可以直接调用其API来完成各种机器学习问题。sklearn介绍scikit-learn是Python语言开发的机器学习库,一般简称为sklearn,目前算是通用机器学习算法库中实现得比较完善的库了。其完善之处不仅在于实现的算法多,还包括大量详尽的文
- 近期微软重大论文----《通用人工智能的火花:GPT-4的早期实验》
小林猿~
chatgpt人工智能深度学习microsoftpythonstablediffusion
这篇论文是最近讨论度极高的一篇论文,推特上几乎被这篇论文刷屏,作者SebastienBubeck是微软机器学习基础组的研究经理。他本人之前的研究主要集中在机器学习理论,凸优化,对抗鲁棒性方法,下面是该大佬的个人主页:虽然作者是做理论ML出身,但是这篇论文中却没有利用机器学习的方法来对GPT-4进行分析,而是从心理学,哲学的角度出发来探讨评估GPT-4的智能。我个人认为这篇论文会是今年最重要的论文之
- 机器学习中为什么需要梯度下降_机器学习理论(四)线性回归中的梯度下降法...
weixin_39607423
机器学习中为什么需要梯度下降线性分组码的最小汉明距为6线性回归梯度下降法python
(小小:机器学习的经典算法与应用)(小小:机器学习理论(一)KNN-k近邻算法)(小小:机器学习理论(二)简单线性回归)(小小:机器学习理论(三)多元线性回归)(小小:机器学习理论(四)线性回归中的梯度下降法)(小小:机器学习理论(五)主成分分析法)(小小:机器学习理论(六)多项式回归)(小小:机器学习理论(七)模型泛化)(小小:机器学习理论(八)逻辑回归)(小小:机器学习理论(九)分类算法的评价
- Robocup 仿真2D 学习笔记(一) ubuntu16.04 搭建 robocup 仿真2D环境
markchalse
robocup2Drobocup仿真2Dubuntu16环境搭建
前言robocup2D是一个仿真机器人足球比赛,也是一个研究多智能体强化学习等机器学习理论算法的优秀平台,在接下来的一段时间,通过学习如何在robocup2D仿真比赛中运用机器学习算法,提高一个球队底层的实力。本文将在ubuntu16.04系统中搭建robcup2D开发环境,因为手中只有15版本的开发环境,但是在安装中与在ubuntu12.04的环境搭建过程有一些不同。本文介绍的搭建过程比较粗略,
- 量化:基于支持向量机的择时策略
无名J0kзr
量化支持向量机算法机器学习
文章目录参考机器学习简介策略简介SVM简介整体流程收集数据准备数据建立模型训练模型测试模型调节参数参考Python机器学习算法与量化交易利用机器学习模型,构建量化择时策略机器学习简介机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也
- 机器学习理论笔记(二):数据集划分以及模型选择
蓝色是天
蓝色是天的机器学习笔记机器学习笔记人工智能数据集验证数据集
文章目录1前言2经验误差与过拟合3训练集与测试集的划分方法3.1留出法(Hold-out)3.2交叉验证法(CrossValidation)3.3自助法(Bootstrap)4调参与最终模型5结语1前言欢迎来到蓝色是天的机器学习笔记专栏!在上一篇文章《机器学习理论笔记(一):初识机器学习》中,我们初步了解了机器学习,并探讨了其定义、分类以及基本术语。作为继续学习机器学习的进一步之旅,今天我们将进一
- 机器学习里面数学知识,到底对数学水平要求多高?
yoku酱
过去几个月里,有不少人联系我,向我表达他们对数据科学、对利用机器学习技术探索统计规律性,开发数据驱动的产品的热情。但是,我发现他们中有些人实际上缺少为了获取有用结果的必要的数学直觉和框架。这是我写这篇文章的主要原因。最近,许多好用的机器和深度学习软件变得十分易得,例如scikit-learn,Weka,Tensorflow,等等。机器学习理论是与统计学、概率论、计算机科学、算法等方面交叉的领域,它
- 机器学习理论笔记(一):初识机器学习
蓝色是天
蓝色是天的机器学习笔记机器学习笔记人工智能NFL西瓜书
文章目录1前言:蓝色是天的机器学习笔记专栏1.1专栏初衷与定位1.2本文主要内容2机器学习的定义2.1机器学习的本质2.2机器学习的分类3机器学习的基本术语4探索"没有免费的午餐"定理(NFL)5结语1前言:蓝色是天的机器学习笔记专栏尊敬的读者们,大家好!欢迎来到我的全新专栏:《蓝色是天的机器学习笔记》。我感到无比兴奋,能够在这里与各位分享我对机器学习的热爱与探索。这个专栏将成为我记录机器学习知识
- Python 数据挖掘与机器学习
xiao5kou4chang6kai4
农业生态气象python数据挖掘机器学习
近年来,Python编程语言受到越来越多科研人员的喜爱,在多个编程语言排行榜中持续夺冠。同时,伴随着深度学习的快速发展,人工智能技术在各个领域中的应用越来越广泛。机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。畅学Python编程及机器学习理论与代码实现方法,从“基础编程→机器学习→代码实现”逐步
- Python数据分析宝藏地带!
计算机视觉研究院
可视化聚类数据分析python机器学习
给大家推荐一个Python机器学习、数据分析的好地方:尤而小屋。这里的原创文章高达260+篇,主要内容涉及:Python机器学习、数据分析、爬虫、kaggle案例分享、Pandas、MySQL、可视化、工具利器等,大家一起来看看,可以关注学习起来喔❤️下面是部分优质原创文章:一、机器学习+kaggle案例机器学习和数据分析案例分享是尤而小屋的核心内容,主要包含机器学习理论+kaggle比赛+数据分
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/