BFS
关键在于队列的使用,访问完当前节点再去访问孙子节点
DFS
可以用递归或者栈实现
package nowcoder.com;
import java.util.*;
/**
* Created by Administrator on 2016/8/26.
*/
public class Maze {
static int[] moveRow = {0, 1, 0, -1};
static int[] moveCol = {1, 0, -1, 0};//用0和1代表4个方向,类似于枚举类
static class MazeNode {//建立内部类,记录路径
public int row;
public int col;
public MazeNode pre;
public MazeNode(int row, int col) {
this.row = row;
this.col = col;
}
@Override
public String toString() {//直接重写toString方法,print即可
return "(" + row + "," + col + ")";
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNext()) {
int ROW = scanner.nextInt();
int COL = scanner.nextInt();
int[][] maze = new int[ROW][COL];//迷宫初始化
for (int i = 0; i < ROW; i++) {
for (int j = 0; j < COL; j++) {
maze[i][j] = scanner.nextInt();
}
}
MazeNode start = new MazeNode(0, 0);
ArrayList result = solution(maze,start);//路径
// ArrayList result = solution1(maze, start);
// for (int i = result.size() - 1; i >= 0; i--) {
// System.out.println(result.get(i));
// }
for (int i = 0; i < result.size(); i++) {
System.out.println(result.get(i));
}
}
}
private static ArrayList solution1(int[][] maze, MazeNode start) {//深度遍历
ArrayList list = new ArrayList<>();
MazeNode node = new MazeNode(0, 0);
int row = maze.length;
int col = maze[0].length;
boolean mark[][] = new boolean[row][col];
BFS(maze, start, mark, list, node);
ArrayList result = new ArrayList<>();
while (node.row != 0 || node.col != 0) {
result.add(node);
node = node.pre;
}
result.add(new MazeNode(0, 0));
return result;
}
private static void BFS(int[][] maze, MazeNode start, boolean[][] mark, ArrayList list, MazeNode end) {
Queue queue = new LinkedList<>();
queue.add(start);//BFS用队列
while (!queue.isEmpty()) {
MazeNode node = queue.poll();//取出队首的节点
list.add(node);
if (node.row == maze.length - 1 && node.col == maze[0].length - 1) {
end.col = node.col;
end.row = node.row;
end.pre = node.pre;
return;
}
int i = node.row;
int j = node.col;
mark[i][j] = true;//访问标记
for (int k = 0; k < 4; k++) {//for循环,把节点r的临界点都访问完才去访问孙子节点
int tmpi = i + moveRow[k];
int tmpj = j + moveCol[k];
if (tmpi >= 0 && tmpi < maze.length && tmpj >= 0 && tmpj < maze[0].length && maze[tmpi][tmpj] == 0 && !mark[tmpi][tmpj]) {
MazeNode node1 = new MazeNode(tmpi, tmpj);
node1.pre = node;
list.add(node1);
queue.add(node1);
}
}
}
}
private static ArrayList solution(int[][] maze, MazeNode start) {
int row = maze.length;
int col = maze[0].length;
boolean mark[][] = new boolean[row][col];
ArrayList path = new ArrayList<>();
ArrayList result = new ArrayList<>();
DFS(maze, start, mark, path, result);
return result;
}
private static void DFS(int[][] maze, MazeNode start, boolean[][] mark, ArrayList path, ArrayList result) {
if (start.col == maze[0].length - 1 && start.row == maze.length - 1) {
path.add(new MazeNode(maze.length - 1, maze[0].length - 1));
int size = path.size();
for (int i = 0; i < size; i++) {
result.add(path.get(i));
}
}
int i = start.row, j = start.col;
mark[start.row][start.col] = true;
path.add(start);
for (int k = 0; k < 4; k++) {
int tmpi = i + moveRow[k];
int tmpj = j + moveCol[k];
if (tmpi >= 0 && tmpi < maze.length && tmpj >= 0 && tmpj < maze[0].length && maze[tmpi][tmpj] == 0 && !mark[tmpi][tmpj]) {
MazeNode node1 = new MazeNode(tmpi, tmpj);
//或者用非递归的while(!path.isEmpty()) path.add(node1);
DFS(maze, node1, mark, new ArrayList<>(path), result);//递归实现DFS
}
}
}
}