Spark-Streaming与Spark-Sql整合实现实时股票排行---通过kafka列队数据

Spark-Streaming与Spark-Sql整合实现实时股票排行---通过kafka列队数据,前端数据通过 kafka队列传递,外层还有flume的实时收集。


1、mvn构建工程,指定好依赖的库,这里用的是spark1.4.1

[html]  view plain  copy
  1. <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  2.     xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">  
  3.     <modelVersion>4.0.0modelVersion>  
  4.   
  5.     <groupId>com.hexungroupId>  
  6.     <artifactId>spark-streaming-javaartifactId>  
  7.     <version>0.0.1-SNAPSHOTversion>  
  8.     <packaging>jarpackaging>  
  9.   
  10.     <name>spark-study-javaname>  
  11.     <url>http://maven.apache.orgurl>  
  12.   
  13.     <properties>  
  14.         <project.build.sourceEncoding>UTF-8project.build.sourceEncoding>  
  15.     properties>  
  16.   
  17.     <dependencies>  
  18.         <dependency>  
  19.             <groupId>junitgroupId>  
  20.             <artifactId>junitartifactId>  
  21.             <version>3.8.1version>  
  22.             <scope>testscope>  
  23.         dependency>  
  24.         <dependency>  
  25.             <groupId>org.apache.sparkgroupId>  
  26.             <artifactId>spark-core_2.10artifactId>  
  27.             <version>1.4.1version>  
  28.         dependency>  
  29.         <dependency>  
  30.             <groupId>org.apache.sparkgroupId>  
  31.             <artifactId>spark-sql_2.10artifactId>  
  32.             <version>1.4.1version>  
  33.         dependency>  
  34.         <dependency>  
  35.             <groupId>org.apache.sparkgroupId>  
  36.             <artifactId>spark-hive_2.10artifactId>  
  37.             <version>1.4.1version>  
  38.         dependency>  
  39.         <dependency>  
  40.             <groupId>org.apache.sparkgroupId>  
  41.             <artifactId>spark-streaming_2.10artifactId>  
  42.             <version>1.4.1version>  
  43.         dependency>  
  44.         <dependency>  
  45.             <groupId>org.apache.hadoopgroupId>  
  46.             <artifactId>hadoop-clientartifactId>  
  47.             <version>2.6.0version>  
  48.         dependency>  
  49.         <dependency>  
  50.             <groupId>org.apache.sparkgroupId>  
  51.             <artifactId>spark-streaming-kafka_2.10artifactId>  
  52.             <version>1.4.1version>  
  53.         dependency>  
  54.         <dependency>  
  55.             <groupId>mysqlgroupId>  
  56.             <artifactId>mysql-connector-javaartifactId>  
  57.             <version>5.1.6version>  
  58.         dependency>  
  59.     dependencies>  
  60.   
  61.     <build>  
  62.         <sourceDirectory>src/main/javasourceDirectory>  
  63.         <testSourceDirectory>src/main/testtestSourceDirectory>  
  64.   
  65.         <plugins>  
  66.             <plugin>  
  67.                 <artifactId>maven-assembly-pluginartifactId>  
  68.                 <configuration>  
  69.                     <descriptorRefs>  
  70.                         <descriptorRef>jar-with-dependenciesdescriptorRef>  
  71.                     descriptorRefs>  
  72.                     <archive>  
  73.                         <manifest>  
  74.                             <mainClass>mainClass>  
  75.                         manifest>  
  76.                     archive>  
  77.                 configuration>  
  78.                 <executions>  
  79.                     <execution>  
  80.                         <id>make-assemblyid>  
  81.                         <phase>packagephase>  
  82.                         <goals>  
  83.                             <goal>singlegoal>  
  84.                         goals>  
  85.                     execution>  
  86.                 executions>  
  87.             plugin>  
  88.   
  89.             <plugin>  
  90.                 <groupId>org.codehaus.mojogroupId>  
  91.                 <artifactId>exec-maven-pluginartifactId>  
  92.                 <version>1.2.1version>  
  93.                 <executions>  
  94.                     <execution>  
  95.                         <goals>  
  96.                             <goal>execgoal>  
  97.                         goals>  
  98.                     execution>  
  99.                 executions>  
  100.                 <configuration>  
  101.                     <executable>javaexecutable>  
  102.                     <includeProjectDependencies>trueincludeProjectDependencies>  
  103.                     <includePluginDependencies>falseincludePluginDependencies>  
  104.                     <classpathScope>compileclasspathScope>  
  105.                 configuration>  
  106.             plugin>  
  107.   
  108.             <plugin>  
  109.                 <groupId>org.apache.maven.pluginsgroupId>  
  110.                 <artifactId>maven-compiler-pluginartifactId>  
  111.                 <configuration>  
  112.                     <source>1.6source>  
  113.                     <target>1.6target>  
  114.                 configuration>  
  115.             plugin>  
  116.   
  117.         plugins>  
  118.     build>  
  119. project>  



2、实现过程:

1)通过kafka队列获取数据,createDirectStream实现

2)映射pojo与数据的关系,注册成sparksql的表

3)实现sql中的函数,这里大部分的函数都要自己实现udf,甚至length简单的函数

4)  编写sql语实现

5)保存入MySQL数据,供前端展示

具体代码如下(Scala版本):

[java]  view plain  copy
  1. package com.hexun.streaming  
  2.   
  3. import java.sql.{DriverManager, Connection}  
  4. import java.util.Date  
  5. import java.util.regex.Pattern  
  6.   
  7. import kafka.serializer.StringDecoder  
  8. import org.apache.commons.lang.time.DateFormatUtils  
  9. import org.apache.spark.streaming.kafka.KafkaUtils  
  10. import org.apache.spark.streaming.{Seconds, StreamingContext}  
  11. import org.apache.spark.{SparkContext, SparkConf}  
  12.   
  13. import scala.collection.mutable  
  14.   
  15. import scala.collection.immutable.ListMap  
  16.   
  17.   
  18. /** 
  19.  * Created by Administrator on 2015/11/26. 
  20.  */  
  21. object StockCntSumKafkaLPcnt {  
  22.   
  23.   
  24.   case class Tracklog(dateday: String, datetime: String, ip: String, cookieid: String, userid: String, logserverip: String, referer: String, requesturl: String, remark1: String,  
  25.                       remark2: String, alexaflag: String, ua: String)  
  26.   
  27.   
  28.   def main(args: Array[String]) {  
  29.     val smap = new mutable.HashMap[String, Integer]()  
  30.   
  31.     val url = "jdbc:mysql://10.130.3.211:3306/charts"  
  32.     val user = "dbcharts"  
  33.     val password = "Abcd1234"  
  34.   
  35.     val conf = new SparkConf().setAppName("stocker"//.setMaster("local[2]")  
  36.     val sc = new SparkContext(conf)  
  37.   
  38.     val ssc = new StreamingContext(sc, Seconds(15))  
  39.   
  40.     // Kafka configurations  
  41.   
  42.     val topics = Set("teststreaming")  
  43.   
  44.     val brokers = "bdc46.hexun.com:9092,bdc53.hexun.com:9092,bdc54.hexun.com:9092"  
  45.   
  46.     val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers, "serializer.class" -> "kafka.serializer.StringEncoder")  
  47.   
  48.     // Create a direct stream  
  49.     val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)  
  50.   
  51.     val events = kafkaStream.flatMap(line => {  
  52.       Some(line.toString())  
  53.     })  
  54.   
  55.     try {  
  56.       val tmpdf = events.map(_.split(" ")).filter(_.length >= 11).map(x => Tracklog(x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9), x(10), x(11)))  
  57.   
  58.       tmpdf.foreachRDD { rdd =>  
  59.         val sqlContext = new org.apache.spark.sql.SQLContext(sc)  
  60.   
  61.         import sqlContext.implicits._  
  62.         val df = rdd.toDF().registerTempTable("tracklog")  
  63.   
  64.         sqlContext.udf.register("strLen", (str: String) => str.length())  
  65.   
  66.         sqlContext.udf.register("concat", (str1: String, str2: String, str3: String) => str1 + str2 + str3)  
  67.   
  68.         sqlContext.udf.register("regexp_extract", (str: String, pattern: String) => {  
  69.           val matcher = Pattern.compile(pattern, 1).matcher(str)  
  70.           var res = ""  
  71.           while (matcher.find()) {  
  72.             res = matcher.group()  
  73.           }  
  74.           res  
  75.         })  
  76.   
  77.         val rcount = sqlContext.sql("SELECT  substring(t.requesturl,strLen(regexp_extract(t.requesturl,'(.*?[^0-9][0|3|6][0][0-9][0-9][0-9][0-9]).*?'))-5,6) stock_code," +  
  78.           "concat('http://stockdata.stock.hexun.com/', substring(t.requesturl,strLen(regexp_extract(t.requesturl,'(.*?[^0-9][0|3|6][0][0-9][0-9][0-9][0-9]).*?'))-5,6),'.shtml') url," +  
  79.           "count(*) clickcnt " +  
  80.           "FROM " +  
  81.           "(select distinct dateday,datetime,ip,cookieid,userid,logserverip,referer,requesturl,remark1,remark2,alexaflag,ua from  tracklog where strLen(datetime)=12) t " +  
  82.           "WHERE  " +  
  83.           "regexp_extract(t.requesturl,'(.*?[^0-9][0|3|6][0][0-9][0-9][0-9][0-9]).*?') <>'' " +  
  84.           "and t.requesturl like 'http://stockdata.stock.hexun.com/%shtml' " +  
  85.           "and t.requesturl not like '%index%' " +  
  86.           "and t.requesturl not like '%fund%' " +  
  87.           "group by substring(t.requesturl,strLen(regexp_extract(t.requesturl,'(.*?[^0-9][0|3|6][0][0-9][0-9][0-9][0-9]).*?'))-5,6)  " +  
  88.           "order by clickcnt desc " +  
  89.           "limit 150")  
  90.   
  91.         var flag:Int = 0  
  92.   
  93.   
  94.         rcount.collect().foreach(data => {  
  95.           flag = 1;  
  96.           val stockerId = data.get(0).toString;  
  97.           val cnt = smap.get(stockerId)  
  98.   
  99.           println("stockerId: " + stockerId + ", cnt:" + cnt)  
  100.   
  101.           if (cnt == null || cnt.toString.equals("None")) {  
  102.             smap += (stockerId -> Integer.parseInt(data.get(2).toString))  
  103.           } else if (cnt != null && !cnt.toString.equals("None")) {  
  104.             val cntI = smap(stockerId)  
  105.             val sum: Integer = Integer.parseInt(data.get(2).toString) + cntI  
  106.             smap += (stockerId -> sum)  
  107.           }  
  108.         })  
  109.   
  110.   
  111.         if(flag == 1){  
  112.           // sort by value  
  113.           var idx: Int = 1  
  114.   
  115.           val sortMap = ListMap(smap.toSeq.sortWith(_._2 > _._2): _*)  
  116.   
  117.           val stattime = DateFormatUtils.format(new Date, "yyyy-MM-dd HH:mm:ss")  
  118.   
  119.           val conn: Connection = DriverManager.getConnection(url, user, password)  
  120.           val pstat = conn.prepareStatement("INSERT INTO  stock_realtime_analysis_spark (stockId,url,clickcnt,type,recordtime) VALUES (?,?,?,?,?)")  
  121.   
  122.           sortMap foreach {  
  123.             case (key, value) =>  
  124.               if (idx <= 150) {  
  125.                 println(key + ",http://stockdata.stock.hexun.com/" + key + ".shtml," + value + "," + stattime)  
  126.   
  127.                 pstat.setString(1, key)  
  128.                 pstat.setString(2"http://stockdata.stock.hexun.com/" + key + ".shtml")  
  129.                 pstat.setInt(3, value)  
  130.                 pstat.setString(4"01")  
  131.                 pstat.setString(5, stattime)  
  132.   
  133.                 pstat.executeUpdate()  
  134.               }  
  135.               idx = idx + 1  
  136.           }  
  137.   
  138.           pstat.close  
  139.           conn.close  
  140.   
  141.           flag == 0  
  142.         }  
  143.   
  144.   
  145.       }  
  146.     } catch {  
  147.       case e: Exception =>  
  148.     }  
  149.   
  150.     ssc.start()  
  151.     ssc.awaitTermination()  
  152.   }  
  153.   
  154. }  


3、任务提交执行脚本如下:

[plain]  view plain  copy
  1. #!/bin/bash  
  2. source /etc/profile  
  3.   
  4. stocker=`ps -ef | grep spark |grep SparkStreaming.jar | awk '{print $2}'`  
  5. echo $stocker  
  6.   
  7. kill -9 $stocker  
  8.   
  9. nohup /opt/modules/spark/bin/spark-submit \  
  10. --master spark://10.130.2.20:7077 \  
  11. --driver-memory 3g \  
  12. --executor-memory 3g \  
  13. --total-executor-cores 24 \  
  14. --conf spark.ui.port=56689  \  
  15. --jars /opt/bin/sparkJars/kafka_2.10-0.8.2.1.jar,/opt/bin/sparkJars/spark-streaming-kafka_2.10-1.4.1.jar,/opt/bin/sparkJars/metrics-core-2.2.0.jar,/opt/bin/sparkJars/mysql-connector-java-5.1.26-bin.jar,/opt/bin/sparkJars/spark-streaming-  
  16. kafka_2.10-1.4.1.jar \  
  17. --class com.hexun.streaming.StockCntSumKafkaLPcnt \  
  18. /opt/bin/UDF/SparkStreaming.jar \  
  19.  >/opt/bin/initservice/stock.log 2>&1 & \  

你可能感兴趣的:(spark,streaming)