[二进制分组 线段树 || 点分治 分治] UOJ #191 【集训队互测2016】Unknown

详见lzz的集训队论文

二进制分组做法

二进制分组是在线段树的结构上做的 方便区间查询
至于删除 采用延迟重构的思想 每一层只有最后一个区间是萎的 我们需要递归下去 询问还是 O(logn) 个节点 重构复杂度势能分析下 O(nlogn)
只有上凸包是有效的 合并的时候采用归并加Graham可以做到 O(n) 不然以我的常数 T的血惨
但是卡内存 只有90分

#include
#include
#include
#include
#include
#include
#define pb push_back
using namespace std;
typedef double ld;
typedef long long ll;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

const int N=550005;
const ld PI=acos(-1.0);

struct PP{
  ll x,y;
  PP(ll x=0,ll y=0):x(x),y(y) { }
  friend PP operator + (PP A,PP B){ return PP(A.x+B.x,A.y+B.y); }
  friend PP operator - (PP A,PP B){ return PP(A.x-B.x,A.y-B.y); }
  friend ll operator * (PP A,PP B){ return A.x*B.y-A.y*B.x; }
  friend ld Ang(PP A,PP B){
    ld ang=atan2(B.y-A.y,B.x-A.x);
    return (B.y2*PI:ang;
  }
  bool operator < (const PP &B) const{
    return x==B.x?yvector<int> hull[N<<1];

int tmp[N]; int cnt,pnt;

PP pp[N];

int ncnt;
int last[N];
int ls[N<<1],rs[N<<1],lp[N<<1],lb[N<<1],rb[N<<1];
int tag[N<<1];

inline void BH(int x,int l,int r){
  hull[x].clear();
  if (l==r) { hull[x].pb(l); return; }
  int p=0,q=0; cnt=0;
  //assert(tag[ls[x]] && tag[rs[x]]);
  for (;pint t;
    if (p==hull[ls[x]].size())
      t=hull[rs[x]][q++];
    else if (q==hull[rs[x]].size())
      t=hull[ls[x]][p++];
    else if (pp[hull[ls[x]][p]].xelse
      t=hull[rs[x]][q++];
    if (cnt && pp[t].x==pp[tmp[cnt]].x){
      if (pp[tmp[cnt]].yelse
      tmp[++cnt]=t;
  }
  pnt=0;
  for (int i=1;i<=cnt;i++){
    while (pnt>=2 && (pp[tmp[i]]-pp[tmp[pnt]])*(pp[tmp[pnt]]-pp[tmp[pnt-1]])<=0) pnt--;
    tmp[++pnt]=tmp[i];
  }
  for (int i=1;i<=pnt;i++)
    hull[x].pb(tmp[i]);
}
inline ll query(int x,PP p){
  int L=-1,R=hull[x].size()-1,MID;
  while (L+1>1;
    if ((pp[hull[x][MID+1]]-pp[hull[x][MID]])*p<=0)
      L=MID;
    else
      R=MID;
  }
  return p*pp[hull[x][R]];
}


inline void Build(int &x,int l,int r,int d=0){
  x=++ncnt; lp[x]=last[d]; last[d]=x; lb[x]=l; rb[x]=r;
  if (l==r) return;
  int mid=(l+r)>>1;
  Build(ls[x],l,mid,d+1); Build(rs[x],mid+1,r,d+1);
}

inline void Add(int x,int l,int r,int t){
  if (t==r && lp[x]) tag[lp[x]]=1,BH(lp[x],lb[lp[x]],rb[lp[x]]);
  if (l==r) return;
  int mid=(l+r)>>1;
  if (t<=mid) Add(ls[x],l,mid,t);
  else Add(rs[x],mid+1,r,t);
}
inline void Del(int x,int l,int r,int t){
  tag[x]=0;
  if (l==r) return;
  int mid=(l+r)>>1;
  if (t<=mid) Del(ls[x],l,mid,t);
  else Del(rs[x],mid+1,r,t);
}

ll Ret;
inline void Query(int x,int l,int r,int ql,int qr,PP p){
  if (ql<=l && r<=qr && (tag[x] || l==r)){
    if (lelse
      Ret=max(Ret,p*pp[l]);
    return;
  }
  int mid=(l+r)>>1;
  if (ql<=mid) Query(ls[x],l,mid,ql,qr,p);
  if (qr>mid) Query(rs[x],mid+1,r,ql,qr,p);
}

const int P=998244353;

int main(){
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  int order,x,y,l,r;
  int m; read(m);
  while (1){
    read(m); if (m==0) break;
    int tot=0,rt; int n=1; while (n1;
    ncnt=0;
    Build(rt,1,n);
    int ans=0;
    while (m--){
      read(order); 
      if (order==1)
    read(x),read(y),pp[++tot]=PP(x,y),Add(1,1,n,tot);
      else if (order==2)
    Del(1,1,n,tot--);
      else{
    Ret=-1LL<<60; read(l); read(r); read(x); read(y);
    Query(1,1,n,l,r,PP(x,y));
    ans^=((Ret%P)+P)%P;
      }
    }
    printf("%d\n",ans);
    for (int i=1;i<=ncnt;i++) ls[i]=rs[i]=lp[i]=last[i]=tag[i]=0,hull[i].clear();
  }
  return 0;
}

操作树上点分治

发现加入删除就类似dfs中栈的过程 这样我们把操作树建出来就转化为一条方向到根的路径 点分后统计下重心到根的贡献更新下 这个再用一个分治就好了 具体最优能做到几个log 看论文 不然可能还是T的血惨
还是卡内存 好不容易卡进了 被cha了 只有97

#include
#include
#include
#include
#define pb push_back
using namespace std;
//typedef pair abcd;
#define abcd PP
#define first x
#define second y
typedef double ld;
typedef long long ll;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

const int N=300005;
const ld PI=acos(-1.0);

struct PP{
  ll x,y;
  PP(ll x=0,ll y=0):x(x),y(y) { }
  friend PP operator + (PP A,PP B){ return PP(A.x+B.x,A.y+B.y); }
  friend PP operator - (PP A,PP B){ return PP(A.x-B.x,A.y-B.y); }
  friend ll operator * (PP A,PP B){ return A.x*B.y-A.y*B.x; }
  bool operator < (const PP &B) const{
    return x==B.x?ystruct edge{
  int v,next;
}G[N<<1];
int head[N],qhead[N],inum;
inline void add(int u,int v,int p,int *head=::head){
  /*G[p].u=u;*/ G[p].v=v; G[p].next=head[u]; head[u]=p;
}
#define V G[p].v
int ncnt; //int Stack[N],Pnt;
PP pp[N];

int fat[N],depth[N];

bool del[N];

int minv=1<<30,size[N],sum,rt;
inline void Root(int u,int fa){
  size[u]=1; int maxv=0;
  for (int p=head[u];p;p=G[p].next)
    if (V!=fa && !del[V])
      Root(V,u),size[u]+=size[V],maxv=max(maxv,size[V]);
  maxv=max(maxv,sum-size[u]);
  if (minv>maxv) minv=maxv,rt=u;
}

//vector que[N];
int tot,uu[N]/*,vv[N]*/; ll ans[N];
PP qp[N];

bool cmp(abcd x,abcd y){
  return qp[x.second]*qp[y.second]<=0;
}

PP po[N]; int pcnt; PP tmpp[N];
abcd qq[N]; int qcnt; //abcd tmp[N];

inline void divide(int l,int r,int ql,int qr,int &hcnt){
  if (l==r){
    sort(qq+ql,qq+qr+1,cmp);
    for (int i=ql;i<=qr;i++)
      ans[qq[i].second]=max(ans[qq[i].second],qp[qq[i].second]*po[l]);
    hcnt=1;
    return;
  }
  int lh=0,rh=0; int mid=(l+r)>>1;
  int lp=ql-1,rp=qr+1;
  for (int i=ql;i<=qr;i++)
    if (qq[i].first<=mid) tmpp[++lp]=qq[i]; else tmpp[--rp]=qq[i];
  for (int i=ql;i<=qr;i++) qq[i]=tmpp[i];

  divide(l,mid,ql,lp,lh);
  divide(mid+1,r,rp,qr,rh);

  int j=1;
  for (int i=rp;i<=qr;i++){
    while (j+1<=lh && qp[qq[i].second]*po[l+j-1]1)-1])
      j++;
    ans[qq[i].second]=max(ans[qq[i].second],qp[qq[i].second]*po[l+j-1]);
  }

  if (!(l==1 && r==pcnt)){
    int p=1,q=1; int cnt=0;
    while (p<=lh || q<=rh){
      PP t;
      if (p==lh+1 || (q<=rh && po[mid+q].x<=po[l+p-1].x))
    t=po[mid+(q++)];
      else
    t=po[l+(p++)-1];
      if (!cnt || tmpp[cnt].x!=t.x)
    tmpp[++cnt]=t;
      else
    tmpp[cnt].y=max(tmpp[cnt].y,t.y);
    }
    int pnt=0;
    for (int i=1;i<=cnt;i++){
      while (pnt>=2 && (tmpp[i]-tmpp[pnt])*(tmpp[pnt]-tmpp[pnt-1])<=0) pnt--;
      tmpp[++pnt]=tmpp[i];
    }
    hcnt=pnt;
    for (int i=1;i<=pnt;i++) po[l+i-1]=tmpp[i];

    pnt=0,p=ql,q=rp;
    while (p<=lp || q<=qr){
      if (p==lp+1 || (q<=qr && qp[qq[q].second]*qp[qq[p].second]<0))
    tmpp[++pnt]=qq[q++];
      else
    tmpp[++pnt]=qq[p++];
    }
    for (int i=1;i<=pnt;i++) qq[ql+i-1]=tmpp[i];
  }
}

int R,Gg;

inline void dfs(int u,int fa){
  //for (int i:que[u])
  for (int p=qhead[u];p;p=G[p].next){
    int i=V;
    if (depth[uu[i]]<=depth[Gg])
      qq[++qcnt]=abcd(depth[Gg]-max(depth[uu[i]],depth[R])+1,i);
  }
  for (int p=head[u];p;p=G[p].next)
    if (V!=fa && !del[V])
      dfs(V,u);
}

inline void Divide(int u,int S){
  sum=S; minv=1<<30; Root(u,0);
  R=u; Gg=rt;
  pcnt=0; int t=Gg; while (t!=R) po[++pcnt]=pp[t],t=fat[t]; po[++pcnt]=pp[R];
  qcnt=0; dfs(Gg,fat[Gg]);
  int tmp; if (qcnt) divide(1,pcnt,1,qcnt,tmp);

  int tt=Gg;
  del[Gg]=1;
  if (Gg^R) Divide(u,S-size[Gg]);
  for (int p=head[tt];p;p=G[p].next)
    if (!del[V])
      Divide(V,size[V]);
}

const int P=998244353;

int main(){
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  int m; int order,l,r,x,y;
  read(m);
  while (1){
    read(m); if (!m) break; int cur=0,Pnt=0,*Stack=size;tot=ncnt=0;
    Stack[++Pnt]=++ncnt; cur=ncnt;
    while (m--){
      read(order);
      if (order==1){
    ++ncnt; if (cur) add(cur,ncnt,++inum),fat[ncnt]=cur;
    depth[ncnt]=depth[fat[ncnt]]+1;
    cur=ncnt; Stack[++Pnt]=ncnt;
    read(x); read(y); pp[ncnt]=PP(x,y);
      }else if (order==2){
    cur=fat[cur]; Stack[Pnt--]=0;
      }else if (order==3){
    read(l); read(r); read(x); read(y);
    ++tot; ans[tot]=-1LL<<60; qp[tot]=PP(x,y);  uu[tot]=Stack[l+1];
    //vv[tot]=Stack[r+1]; que[vv[tot]].pb(tot);
    //que[Stack[r+1]].pb(tot);
    add(Stack[r+1],tot,++inum,qhead);
      }
    }
    Divide(1,ncnt);
    int Ans=0;
    for (int i=1;i<=tot;i++)
      Ans^=(ans[i]%P+P)%P;
    printf("%d\n",Ans);
    for (int i=1;i<=ncnt;i++) head[i]=del[i]=fat[i]=depth[i]=0,qhead[i]=0/*,que[i].clear()*/; inum=0;
  }
  return 0;
}

你可能感兴趣的:(二进制分组,线段树,分治,点分治)