离散型随机变量及其分布列习题

前言

一、

  • 【例1】[2015安徽卷]已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,知道检测出2件次品或检测出3件正品时检测结束。

(1)求第一次检测出的是次品且第二次检测出的是正品的概率。

(2)已知每检测一件产品需要费用100元,设\(X\)表示直到检测出2件次品或者检测出3件正品时所需要的检测费(单位:元),求\(X\)的分布列和数学期望。

分析:(1)思路1:利用排列数公式和古典概型,\(P=\cfrac{A_2^1A_3^1}{A_5^2}=\cfrac{3}{10}\hspace{2cm}\) 思路2:利用相互独立事件,\(P=\cfrac{2}{5}\times \cfrac{3}{4}=\cfrac{3}{10}\)

(2)先设检测过的产品数为\(x\),则由题目可知\(x=2,3,4\)

其中\(x=2\)时对应“次次”一种;

其中\(x=3\)时对应“正次次、次正次、正正正”三种;

其中\(x=4\)时对应“正次正次、正正次次、次正正次、次正正正、正正次正、正次正正”六种;

\(X\)的所有可能取值为\(200,300,400\)
\(P(X=200)=\cfrac{2}{5}\times \cfrac{1}{4}=\cfrac{1}{10}\)

\(P(X=300)=\cfrac{3}{5}\times \cfrac{2}{4}\times \cfrac{1}{3}+\cfrac{2}{5}\times \cfrac{3}{4}\times \cfrac{1}{3}+\cfrac{3}{5}\times \cfrac{2}{4}\times \cfrac{1}{3}=\cfrac{3}{10}\)

\(P(X=400)=\cfrac{3}{5}\times \cfrac{2}{4}\times \cfrac{2}{3}\times \cfrac{1}{2}+\cfrac{2}{5}\times \cfrac{3}{4}\times \cfrac{2}{3}\times \cfrac{1}{2}+\cfrac{3}{5}\times \cfrac{2}{4}\times \cfrac{2}{3}\times \cfrac{1}{2}+\cfrac{2}{5}\times \cfrac{3}{4}\times \cfrac{2}{3}\times \cfrac{1}{2}+\cfrac{3}{5}\times \cfrac{2}{4}\times \cfrac{2}{3}\times \cfrac{1}{2}+\cfrac{3}{5}\times \cfrac{2}{4}\times \cfrac{2}{3}\times \cfrac{1}{2}=\cfrac{6}{10}\)

\(P(X=400)=1-P(X=200)-P(X=300)=\cfrac{6}{10}\)

其余略。

  • 【例2】(2016山东高考节选)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜想一个成语。在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都猜错,则“星队”得0分。已知甲每轮猜对的概率为\(\cfrac{3}{4}\),乙每轮猜对的概率为\(\cfrac{2}{3}\),每轮活动中甲乙猜对与否互不影响,各轮结果亦互不影响,假设“星队”参加两轮活动,求:

⑴“星队”至少猜对3个成语的概率;

⑵“星队”两轮得分之和\(X\)的分布列。

分析:⑴先定义事件,记““星队”至少猜对3个成语”为事件\(E\),“甲第一轮猜对”为事件\(A\),“乙第一轮猜对”为事件\(B\),“甲第二轮猜对”为事件\(C\),“乙第二轮猜对”为事件\(D\),且\(P(A)=P(C)=\cfrac{3}{4}\)\(P(B)=P(D)=\cfrac{2}{3}\)

\(E=ABCD+\bar{A}BCD+A\bar{B}CD+AB\bar{C}D+ABC\bar{D}\),事件\(A、B、C、D\)相互独立,事件\(ABCD、\bar{A}BCD、A\bar{B}CD、AB\bar{C}D、ABC\bar{D}\)互斥,故有

\(P(E)=P(ABCD+\bar{A}BCD+A\bar{B}CD+AB\bar{C}D+ABC\bar{D})=P(ABCD)+P(\bar{A}BCD)+P(A\bar{B}CD)+P(AB\bar{C}D)+P(ABC\bar{D})\)

\(=\cfrac{3}{4}\times\cfrac{2}{3}\times\cfrac{3}{4}\times\cfrac{2}{3}+\cfrac{1}{4}\times\cfrac{2}{3}\times\cfrac{3}{4}\times\cfrac{2}{3}+\cfrac{3}{4}\times\cfrac{1}{3}\times\cfrac{3}{4}\times\cfrac{2}{3}+\cfrac{3}{4}\times\cfrac{2}{3}\times\cfrac{1}{4}\times\cfrac{2}{3}+\cfrac{3}{4}\times\cfrac{2}{3}\times\cfrac{3}{4}\times\cfrac{1}{3}=\cfrac{2}{3}\).

⑵由于“星队”每轮得分分别为0分、1分、3分,则“星队”两轮得分之和\(X\)可能取值为0、1、2、3、4、6,

\(P(X=0)=P(\bar{A}\bar{B}\bar{C}\bar{D})=\cfrac{1}{4}\times\cfrac{1}{3}\times\cfrac{1}{4}\times\cfrac{1}{3}=\cfrac{1}{16\times 9}=\cfrac{1}{144}\)

\(P(X=1)=P(A\bar{B}\bar{C}\bar{D})+P(\bar{A}B\bar{C}\bar{D})+P(\bar{A}\bar{B}C\bar{D})+P(\bar{A}\bar{B}\bar{C}D)=\cfrac{3}{4}\times\cfrac{1}{3}\times\cfrac{1}{4}\times\cfrac{1}{3}+\cfrac{1}{4}\times\cfrac{2}{3}\times\cfrac{3}{4}\times\cfrac{1}{3}+\cfrac{1}{4}\times\cfrac{1}{3}\times\cfrac{3}{4}\times\cfrac{1}{3}+\cfrac{1}{4}\times\cfrac{1}{3}\times\cfrac{1}{4}\times\cfrac{2}{3}=\cfrac{10}{16\times 9}=\cfrac{5}{72}\)

\(P(X=2)=P(A\bar{B}C\bar{D})+P(A\bar{B}\bar{C}D)+P(\bar{A}B\bar{C}D)+P(\bar{A}BC\bar{D})=\cfrac{3}{4}\times\cfrac{1}{3}\times\cfrac{3}{4}\times\cfrac{1}{3}+\cfrac{3}{4}\times\cfrac{1}{3}\times\cfrac{1}{4}\times\cfrac{2}{3}+\cfrac{1}{4}\times\cfrac{2}{3}\times\cfrac{1}{4}\times\cfrac{2}{3}+\cfrac{1}{4}\times\cfrac{2}{3}\times\cfrac{3}{4}\times\cfrac{1}{3}=\cfrac{25}{16\times 9}=\cfrac{25}{144}\)

\(P(X=3)=P(\bar{A}\bar{B}CD)+P(AB\bar{C}\bar{D})=\cfrac{1}{4}\times\cfrac{1}{3}\times\cfrac{3}{4}\times\cfrac{2}{3}+\cfrac{3}{4}\times\cfrac{2}{3}\times\cfrac{1}{4}\times\cfrac{1}{3}=\cfrac{12}{16\times 9}=\cfrac{1}{12}\)

\(P(X=4)=P(\bar{A}BCD)+P(A\bar{B}CD)+P(AB\bar{C}D)+P(ABC\bar{D})=\cfrac{1}{4}\times\cfrac{2}{3}\times\cfrac{3}{4}\times\cfrac{2}{3}+\cfrac{3}{4}\times\cfrac{1}{3}\times\cfrac{3}{4}\times\cfrac{2}{3}+\cfrac{3}{4}\times\cfrac{2}{3}\times\cfrac{1}{4}\times\cfrac{2}{3}+\cfrac{3}{4}\times\cfrac{2}{3}\times\cfrac{3}{4}\times\cfrac{1}{3}=\cfrac{60}{16\times 9}=\cfrac{5}{12}\)

\(P(X=6)=P(ABCD)=\cfrac{3}{4}\times\cfrac{2}{3}\times\cfrac{3}{4}\times\cfrac{2}{3}=\cfrac{36}{16\times 9}=\cfrac{1}{4}\)

分布列略。

  • 【例3】(例2改编)甲、乙两人参加定点投球大赛活动,每轮活动由甲、乙各投球两次。在每轮活动中,如果投不中得\(0\)分,投中得\(1\)分。已知甲每次投中的概率为\(\cfrac{3}{4}\),乙每次投中的概率为\(\cfrac{2}{3}\),求:

⑴甲至少投中\(1\)个球的概率;

⑵甲乙两人每轮投球得分之和\(Z\)的分布列。

分析:

⑴有题目可知,甲投球两次,每次投中的概率相等,设甲投中球的次数为\(X\),则\(X\sim B\left(2,\cfrac{3}{4}\right)\)

故甲至少投中\(1\)个球的概率\(P=P(X\ge 1)=C_2^1\times(\cfrac{3}{4})^1\times(\cfrac{1}{4})^1+C_2^2\times(\cfrac{3}{4})^2\times(\cfrac{1}{4})^0=\cfrac{15}{16}\).

⑵再设乙投中球的次数为\(Y\),则\(Y\sim B\left(2,\cfrac{2}{3}\right)\),则\(Z\)可能的取值为\(0、1、2、3、4\)

\(P(Z=0)=P(X=0)\times P(Y=0)\)

\(P(Z=1)=P(X=0)\times P(Y=1)+P(X=1)\times P(Y=0)\)

\(P(Z=2)=P(X=0)\times P(Y=2)+P(X=1)\times P(Y=1)+P(X=2)\times P(Y=0)\)

\(P(Z=3)=P(X=1)\times P(Y=2)+P(X=2)\times P(Y=1)\)

\(P(Z=4)=P(X=2)\times P(Y=2)\)

对上述例2、例3的再思考:

⑴例2的第一问,能不能利用二项分布来求解?为什么?

【分析】:设甲猜对的成语个数为\(X\),则\(X\sim B\left(2,\cfrac{3}{4}\right)\),乙猜对成语的个数为\(Y\),则\(Y\sim B\left(2,\cfrac{2}{3}\right)\),“星队至少猜对3个成语”为事件\(E\),则

\(P(E)=P(X=1)P(Y=2)+P(X=2)P(Y=1)+P(X=2)P(Y=2)\)

\(=P(\bar{A}BCD)+P(A\bar{B}CD)+P(AB\bar{C}D)+P(ABC\bar{D})+P(ABCD)\)

⑵例3的第二问能不能用例2的第2问的解法来求解,具体来说是怎么对应的?

【分析】:“甲第一次投中”为事件\(A\),“乙第一次投中”为事件\(B\),“甲第二次投中”为事件\(C\),“乙第二次投中”为事件\(D\),且\(P(A)=P(C)=\cfrac{3}{4}\)\(P(B)=P(D)=\cfrac{2}{3}\)

\(P(Z=2)=P(X=0)\times P(Y=2)+P(X=1)\times P(Y=1)+P(X=2)\times P(Y=0)\)

\(=P(\bar{A}B\bar{C}D)+P(\bar{A}\bar{B}CD+\bar{A}BC\bar{D}+A\bar{B}\bar{C}D+AB\bar{C}\bar{D})+P(A\bar{B}C\bar{D})\)

⑶例2的第2问,为什么不能用二项分布来求解?

依上,设甲猜对的成语个数为\(\mu\),则\(\mu\sim B\left(2,\cfrac{3}{4}\right)\),乙猜对成语的个数为\(\eta\),则\(\eta\sim B\left(2,\cfrac{2}{3}\right)\)

\(P(X=2)=P(\mu=1)P(\eta=1)=P(\bar{A}C+A\bar{C})P(\bar{B}D+B\bar{D})=P(AB\bar{C}\bar{D}+\bar{A}BC\bar{D}+A\bar{B}\bar{C}D+\bar{A}\bar{B}CD)\)

而由上可知,

\(P(X=2)=P(A\bar{B}C\bar{D})+P(A\bar{B}\bar{C}D)+P(\bar{A}B\bar{C}D)+P(\bar{A}BC\bar{D})\),明显事件中有一样的,也有不一样的,主要是二项分布是单独刻画甲和乙的猜测结果,而例2中是把甲乙两个人绑成了“星队”这个整体。所以是不一样的。

转载于:https://www.cnblogs.com/wanghai0666/p/6524726.html

你可能感兴趣的:(离散型随机变量及其分布列习题)