图——Floyd算法(每一对顶点之间的最短路径)

严版数据结构 P191 算法7.16
解析过程 P192 图7.37
#include
#include
#include
#include
#include

using namespace std;

#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define INFINITY 32767 //最大值
#define MAX_VERTEX_NUM 20 //最大顶点个数
typedef int Status;
typedef int VRType;
typedef int InfoType;
typedef bool*** PathMatrix;


//{有向图,有向网,无向图,无向网}
typedef enum { DG, DN, UDG, UDN }GraphKind;

typedef struct ArcCell {
	VRType adj;//VRType是顶点关系类型。对无权图,用1或0
			   //表示相邻否;对带权图,则为权值类型
	InfoType *info;//该弧相关信息的指针
}ArcCell, AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];

typedef ArcCell** DistancMatrix;
typedef char VertexType;
typedef struct {
	VertexType vexs[MAX_VERTEX_NUM];//顶点向量
	AdjMatrix arcs;//邻接矩阵
	int vexnum, arcnum;//图的当前顶点数和弧数
	GraphKind kind;//图的种类标志
}MGraph;




//在G中找到v对应的顶点位置
int LocateVex(MGraph G, char v)
{
	int i;
	for (i = 0; i < G.vexnum; i++)
	{
		if (G.vexs[i] == v)
		{
			return i;
		}
	}
	return -1;
}



Status CreateDN(MGraph &G)
{
	int i, j, k, w;
	VertexType v1, v2;
	cout << "输入顶点数G.vexnum:";
	cin >> G.vexnum;
	cout << "输入边数G.arcnum:";
	cin >> G.arcnum;
	getchar();
	for (i = 0; i < G.vexnum; i++)
	{
		cout << "输入顶点G.vexs[" << i << "]" << endl;
		cin >> G.vexs[i];
		getchar();
	}//构造顶点向量

	 //初始化邻接矩阵
	for (i = 0; i < G.vexnum; i++)
	{
		for (j = 0; j < G.vexnum; j++)
		{
			G.arcs[i][j].adj = INFINITY;
			G.arcs[i][j].info = NULL;
			if (i == j)
			{
				G.arcs[i][j].adj = 0;
			}
		}
	}
	//构造邻接矩阵
	for (k = 0; k < G.arcnum; ++k)
	{
		cout << "输入第" << k + 1 << "条边vi、vj和权值w(int):" << endl;
		//输入一条边依附的顶点及权值
		cin >> v1;
		cin >> v2;
		cin >> w;
		getchar();
		//确定v1和v2在G中的位置
		i = LocateVex(G, v1);
		j = LocateVex(G, v2);
		G.arcs[i][j].adj = w;//弧的权值
	}
	return OK;
}

void list(MGraph G)
{
	int i, j;
	cout << "输出邻接矩阵:" << endl;
	for (i = 0; i < G.vexnum; ++i)
	{
		cout << G.vexs[i] << "----";
		for (j = 0; j < G.vexnum; ++j)
		{
			if (G.arcs[i][j].adj == INFINITY)
				cout << setw(4) << "∞";
			else
				cout << setw(4) << G.arcs[i][j].adj;
		}
		cout << endl;
	}
}

void ShortestPath_FLOYD(MGraph G,PathMatrix &P, DistancMatrix &D)
{
	int i, j, v, w,u;
	P = (bool ***)malloc(sizeof(bool *)*G.vexnum);
	for (i = 0; i < G.vexnum; i++)
		P[i] = (bool **)malloc(sizeof(bool)*G.vexnum);
	for (i = 0; i < G.vexnum; i++)
		for(j=0;j

代码如下:

你可能感兴趣的:(数据结构)