- 常见机器学习算法总结
婉妃
基本算法总结正面.jpeg图的左半部分列出了常用的机器学习算法与它们之间的演化关系,分为有监督学习,无监督学习,强化学习3大类。右半部分列出了典型算法的总结比较,包括算法的核心点如类型,预测函数,求解的目标函数,求解算法。理解和记忆这张图,对你系统化的掌握机器学习与深度学习会非常有帮助!基本公式反面.jpeg
- 机器学习算法总结
doverxu
回归算法线性回归算法:支持向量机&向前逐步回归&惩罚线性回归(岭回归/套索回归/ElasticNet/最小角度回归LARS/Glmnet)非线性回归算法二元决策树:分割点评价标准是基尼不纯性度量和信息增益自举集成(Bagging):从训练数据集获得一系列的自举样本,对每一个自举样本训练一个基学习器,将基学习器的均值作为结果。梯度提升算法:与Bagging和随机森林的不同之处在于它在减少方差的同时,
- 【深入探究人工智能】:常见机器学习算法总结
.小智
小智带你闲聊人工智能机器学习算法
文章目录1、前言1.1机器学习算法的两步骤1.2机器学习算法分类2、逻辑回归算法2.1逻辑函数2.2逻辑回归可以用于多类分类2.3逻辑回归中的系数3、线性回归算法3.1线性回归的假设3.2确定线性回归模型的拟合优度3.3线性回归中的异常值处理4、支持向量机(SVM)算法4.1优点4.2缺点小结博客主页:小智_x0___0x_欢迎关注:点赞收藏✍️留言系列专栏:小智带你闲聊代码仓库:小智的代码仓库1
- Lime算法总结--可解释性机器学习算法总结
南京比高IT
可解释性分析算法人工智能
一.引言前面我们进行了CAM、GRAD-CAM算法的介绍,本文我们继续介绍一种算法:Lime(LocalInterpretableModel-AgnosticExplanations)二.算法介绍Lime算法是基于局部代理模型来对单个样本进行解释。假设对于需要解释的黑盒模型,取关注的实例样本,在其附近进行扰动生成新的样本点,并得到黑盒模型的预测值,基于新的数据集训练可解释的模型来得到对黑盒模型良好
- 机器学习算法总结
Yngxiao123
机器学习
朴素贝叶斯:有以下几个地方需要注意:只能做分类1.如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。2.计算公式如下:其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是的计算方法,而由朴素贝叶斯的前提假设可知,=,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次
- 机器学习算法总结
程序汪赵可乐
cvnlp算法机器学习人工智能
机器学习两个核心任务:任务一:如何优化训练数据—>主要用于解决欠拟合问题任务二:如何提升泛化性能—>主要用于解决过拟合问题KNN定义:给定一个训练集,对新输入的未知样本,通过计算与每个训练样本的距离,找到与该实例最邻近的K个实例,这K个实例大多属于某个类,该样本就属于某个类应用场景:分类/回归问题算法流程:计算已知类别数据集中的点与当前点之间的距离按照距离值进行排序选取最小的k个距离,并统计这k个
- 机器学习算法总结
正在思考中
机器学习机器学习
机器学习(MachineLearning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。严格的定义:机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问。这里所说的“机器”,指的就是计算机,电子计算机,中子计算机、光子计算机或神经计算
- 十大常用机器学习算法总结(持续完善)
二哥不像程序员
数据挖掘机器学习算法python机器学习人工智能新星计划
前言之前二哥连载了各类常用的机器学习算法的原理与具体推倒过程,本文我们对常用的十大机器学习算法进行总结。记得收藏+点赞+评论呦!目录前言一、线性回归二、K近邻算法(KNN)三、朴素贝叶斯(NB)四、逻辑回归(LR)五、支持向量机(SVM)六、决策树(DT)七、随机森林(RF)八、GBDT九、XGBoost十、K-Means一、线性回归思路:线性回归假设目标值与特征之间线性相关,即满足一个多元一次方
- 【机器学习算法总结】XGBoost
y430
KaggleMachinelearning
目录1.XGBoost2.CART树2.1优缺点2.2分裂依据2.2.1分类2.2.2回归2.3总结2.4参考3.算法原理3.1定义树的复杂度3.2打分函数计算示例3.3分裂结点3.3.1贪心法3.3.2近似算法3.3.3分布式加权直方图算法(WeightedQuantileSketch)4.损失函数(指定grad、hess)4.1参考5.缺失值6.其他优化6.1正则化6.2计算速度提升6.2.1
- 机器学习算法总结(六)——EM算法与高斯混合模型
weixin_30291791
人工智能
极大似然估计是利用已知的样本结果,去反推最有可能(最大概率)导致这样结果的参数值,也就是在给定的观测变量下去估计参数值。然而现实中可能存在这样的问题,除了观测变量之外,还存在着未知的隐变量,因为变量未知,因此无法直接通过最大似然估计直接求参数值。EM算法是一种迭代算法,用于含有隐变量的概率模型的极大似然估计,或者说是极大后验概率估计。1、经典的三硬币模型引入一个例子来说明隐变量存在的问题。假设有3
- 机器学习总结一:Bagging之决策树、随机森林原理与案例
想考个研
机器学习决策树随机森林
机器学习算法总结一、Bagging之决策树、随机森林原理与案例二、boosting之GBDT、XGBT原理推导与案例三、SVM原理推导与案例四、逻辑回归与反欺诈检测案例五、聚类之K-means一、Bagging之决策树、随机森林原理与案例1.决策树1.1简介决策树(DecisionTree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据种总结出决策规则,并利用树状图结构呈现这些规则
- 机器学习总结三:SVM原理推导与案例
想考个研
机器学习支持向量机算法
机器学习算法总结一、Bagging之决策树、随机森林原理与案例二、boosting之GBDT、XGBT原理推导与案例三、SVM原理推导与案例四、逻辑回归与反欺诈检测案例五、聚类之K-means三、SVM1.原理推导(硬间隔)1.1分类问题代数化**svm原理一句话概括:找出一个最优的直线(或超平面)去隔离不同类别样本数据,达到分类目的。**图1图2图1:找出一条直线将样本完美地划分成两类(注意这样
- 机器学习总结四:逻辑回归与反欺诈检测案例
想考个研
机器学习逻辑回归算法
机器学习算法总结一、Bagging之决策树、随机森林原理与案例二、boosting之GBDT、XGBT原理推导与案例三、SVM原理推导与案例四、逻辑回归与反欺诈检测案例五、聚类之K-means四、逻辑回归1、概述由线性回归变化而来的,应用于分类问题中的广义回归算法。组成:回归函数z=w1x1+w2x2+...+wnxn+b=[w1w2wnb]∗[x1x2⋮xn1]=wTXz=w_1x_1+w_2x
- 机器学习算法总结--朴素贝叶斯
spearhead_cai
机器学习算法总结机器学习算法朴素贝叶斯
这次需要总结的是朴素贝叶斯算法,参考文章:《统计学习方法》机器学习常见算法个人总结(面试用)朴素贝叶斯理论推导与三种常见模型朴素贝叶斯的三个常用模型:高斯、多项式、伯努利简介朴素贝叶斯是基于贝叶斯定理与特征条件独立假设的分类方法。贝叶斯定理是基于条件概率来计算的,条件概率是在已知事件B发生的前提下,求解事件A发生的概率,即P(A|B)=P(AB)P(B),而贝叶斯定理则可以通过P(A|B)来求解P
- 机器学习算法总结
ZQ_ZHU
MachineLearning秋招机器学习算法
转自:https://blog.csdn.net/weixin_40411446/article/details/81836322~~~~~·个人整理,如需转载,请说明并备注,不甚感激~~~~~~(这篇文章我很早发布在简书上,不用简书好多年了,哈哈哈,居然上了热搜,特复制在CSDN上供大家参考,为秋招攒点人品)suxuer简书原文地址BAT机器学习面试系列1.请简要介绍下SVM。SVM,全称是su
- 机器学习算法总结
#叫啥名字呢
机器学习机器学习算法
~~~~~·个人整理,如需转载,请说明并备注,不甚感激~~~~~~(这篇文章我很早发布在简书上,不用简书好多年了,哈哈哈,居然上了热搜,特复制在CSDN上供大家参考,为秋招攒点人品)suxuer简书原文地址BAT机器学习面试系列1.请简要介绍下SVM。SVM,全称是supportvectormachine,中文名叫支持向量机。SVM是一个面向数据的分类算法,它的目标是为确定一个分类超平面,从而将不
- 机器学习期末练习题
unseven
机器学习机器学习期末练习题
目录KNN决策树朴素贝叶斯SVMadaboost梯度下降法KmeansAprioriSVD重要的评估指标(注意F1score)机器学习算法总结过拟合和欠拟合产生的原因:解决欠拟合(高偏差)的方法解决过拟合(高方差)的方法:KNN决策树朴素贝叶斯SVMadaboost这个题的答案给的有问题,推荐看完这个解析41、AdaBoost算法原理的举例推演梯度下降法KmeansAprioriSVD重要的评估指
- 梯度提升决策树(GBDT)与XGBoost、LightGBM
weixin_ry5219775
决策树机器学习算法
20211224【机器学习算法总结】XGBoost_yyy430的博客-CSDN博客_xgboostxgboost参数默认:auto。XGBoost中使用的树构造算法。可选项:auto,exact,approx,hist,gpu_exact,gpu_hist。分布式和外部存储器版本仅支持tree_method=approx。auto:使用启发式方法选择最快的方法。(1)对于中小型数据集,将使用精确
- 支持向量机SVM
余生最年轻
机器学习
关键字:vector,support,machine,核函数,支持向量机由于自然语言分类总结:SVM是一个分类问题,在学习复杂的非线性方程时效果很好,是监督式学习(详见前面的微博:机器学习算法总结)。例子:from吴恩达的机器学习视频,肿瘤大小与是否患病的例子1.定义找到一条直线,使得直线可以划分两类,并且到两类的距离(就是图上的垂线长度)一样,这是一条最佳的直线。离直线最近的点叫vector,直
- 机器学习算法总结之聚类:K-means
kaiyuan_sjtu
ML算法总结
写在前面在前面学习的ML算法中,基本都是有监督学习类型,即存在样本标签。然而在机器学习的任务中,还存在另外一种训练样本的标签是未知的,即“无监督学习”。此类任务中研究最多、应用最广泛的是“聚类”(clustering),常见的无监督学习任务还有密度估计、异常检测等。本文将首先介绍聚类基本概念,然后具体地介绍几类细分的聚类算法。参考资料:K-Means聚类算法原理1.聚类简介聚类试图将数据集中的样本
- 机器学习算法总结知识点索引
光英的记忆
算法tensorflowNLP
百面机器学习算法总结索引(声明:以下所有内容及其链接内容来自于百面机器学习一书,仅供自己方便学习和复习,不做任何商业用途,所有链接内容继承本声明)第一节:特征归一化1.为什么需要对数值类型的特征做归一化?2.在对数据进行预处理时,应该怎样处理类别型特征?3.如何处理高纬度组合特征?什么是组合特征?4.5.有哪些文本表示模型?它们各有什么优缺点?6.Word2vec是如何工作的?它和LDA有什么区别
- 机器学习算法总结--决策树
spearhead_cai
机器学习算法
简介定义:分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点和有向边组成。结点有两种类型:内部结点和叶结点。内部结点表示一个特征或属性,叶结点表示一个类。决策树学习通常包括3个步骤:特征选择、决策树的生成和决策树的修剪。决策树学习本质上是从训练数据集中归纳出一组分类规则,也可以说是由训练数据集估计条件概率模型。它使用的损失函数通常是正则化的极大似然函数,其策略是以损失函数为目标函数的最
- 使用Python语言进行机器学习工作流的实例分析
冬之晓东
python机器学习数据处理数据挖掘
最近,在kaggle上找到一位大牛写的机器学习算法总结,感觉流程清晰,内容详实,因此翻译并分享下,由于作者不明原因将原文删除了,所以没法放上原文地址,文中主要以代码实践的方式展开各种算法,原理方面参考文中的地址连接(这是自己加上的),以便随时查阅~目录目录使用Python语言进行机器学习工作流的实例分析1.介绍2.机器学习工作流程3问题定义3.1问题特征3.2目标3.3变量4.输入输出5.安装工具
- 机器学习算法总结11:XGBoost
小颜学人工智能
机器学习
XGBoost(eXtremeGradientBoosting)是于2015年提出的GradientBoosting实现算法,在速度和精度较GBDT有显著提升。XGBoost以类似牛顿法的方式进行优化。任何机器学习问题都可以从目标函数出发,目标函数分为两部分:损失函数+正则化项,其中,损失函数用于描述模型拟合数据的程度,正则化项用于控制模型的复杂度。与GDBT一样,XGBoost采用加法模型,设基
- 机器学习算法总结12:LightGBM
小颜学人工智能
机器学习
LightGBM是一个梯度(GradientBoosting,GB)框架,可用于分类、回归、排序等机器学习任务。相比于XGBoost,LightGBM在不降低准确率的前提下,速度提升了10倍左右,占用内存下降了3倍左右。直方图算法(HistogramAlgorithm)的基本思想是将连续的特征离散化为k个离散特征,同时构造一个宽度为k的直方图,用于统计信息(含有k个bin)即将连续值映射到对应bi
- 机器学习算法总结9:k-means聚类算法
小颜学人工智能
机器学习
无监督学习:训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础。聚类是典型无监督学习任务,它试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个簇。距离度量:通过距离来定义相似度度量,距离越大,相似度越小。最常用的距离度量是闵可夫斯基距离,其中,当p=2时,称为欧氏距离;当p=1时,称为曼哈顿距离。详见我的博客:机器学
- 机器学习算法总结10:Bagging及随机森林
小颜学人工智能
机器学习
Bagging是并行式集成学习方法最著名的代表,可以用于分类任务,也可以用于回归任务,被誉为“代表集成学习技术水平的方法”。不同于Boosting方法对训练数据集赋予不同的权重训练基学习器,Bagging采用“重采样法”,将训练数据集进行采样,进而产生若干个不同的子集,再从每个数据子集中训练出一个基学习器,然后使用结合策略得到强学习器。为得到不同的采样集,使用自助采样法进行采样:给定包含m个样本的
- 机器学习算法总结6:线性回归与逻辑回归
小颜学人工智能
机器学习
线性回归(LinearRegression):线性回归是回归模型,y=f(x):表明自变量x和因变量y的关系。1.模型2.策略损失函数(平方损失函数):注:平方误差代价函数是解决回归问题最常用的代价函数。3.算法最小二乘法:注意:要求X是满秩的!逻辑回归(LogisticRegression):逻辑回归是统计学习中的经典分类方法,属于对数线性模型。1.模型逻辑回归实际上是处理二类分类问题的模型,输
- 基于scikit-learn的随机森林调参实战
kaiyuan_sjtu
ML算法总结
写在前面在之前一篇机器学习算法总结之Bagging与随机森林中对随机森林的原理进行了介绍。还是老套路,学习完理论知识需要实践来加深印象。在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor。当然RF的变种ExtraTrees也有,分类类ExtraTreesClassifier,回归类ExtraTreesRegr
- 【机器学习算法总结】GBDT
y430
MachinelearningKaggle
目录1、GBDT2、GBDT思想3、负梯度拟合4、损失函数4.1、分类4.2、回归5、GBDT回归算法6、GBDT分类算法6.1、二分类6.2、多分类7、正则化8、RF与GBDT之间的区别与联系9、优缺点优点缺点10、应用场景11、主要调参的参数12、sklearn.ensemble.GradientBoostingClassifier参数及方法说明参考1、GBDTGBDT(GradientBoo
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb