最近想学一下CocosCreator,于是,编辑器下载,启动。
众所周知,边写边学才是最快的学习方法,得写个Demo练练手,那么写什么呢?听说现在《墨虾探蝌》挺火的,那就抄(学习的事怎么能叫抄呢?)写一个类似的小游戏吧!
(在《墨虾探蝌》中,鱼的位置固定,到达一定数量后玩家会升级,不会出现一大群鱼的情况,本项目其实和它不同,没有升级进化,是会有一大群鱼的,每条鱼也不是固定位置,而是有自己的运动逻辑,其实和另一个游戏更像,不过我不知道叫什么。。。)
(初学CocosCreator和TypeScript,有写的不好的地方你TM来打我啊还请大家多多包涵。)
本文算法参考了大佬的文章:http://blog.sina.com.cn/s/blog_4a2183a60101avwt.html
效果展示:
首先整一个玩家player:
图片资源用的是CocosCreator官方Demo的图片,照着官方Demo学习了一下,懒得找鱼的图片就直接把图片拿来用了,这个项目目前只用了两张图片
有了player就得写个player控制脚本,点击一个方向,player就会一直向这个方向移动。那么我们首先需要获取玩家点击的位置,然后计算出player移动的方向,我们把这个写在GameManager里面,所以新建一个脚本GameManager,这个脚本挂在Canvas上。
先定义两个变量,玩家节点和方向向量:
@property(cc.Node)
player: cc.Node = null;
dir: cc.Vec2 = cc.Vec2.ZERO;
获取方向的方法:
getClickDir(event) {
let pos: cc.Vec2 = event.getLocation();
//转本地坐标
let localPos = this.node.convertToNodeSpaceAR(pos);
let playerPos: cc.Vec2 = new cc.Vec2(
this.player.position.x,
this.player.position.y
);
let len = localPos.sub(playerPos).mag();
this.dir.x = localPos.sub(playerPos).x / len;
this.dir.y = localPos.sub(playerPos).y / len;
}
这方法在onMouseDown和onMouseMove时调用:
onMouseDown(event) {
if (event.getButton() == cc.Event.EventMouse.BUTTON_LEFT) {
this.getClickDir(event);
}
}
onMouseMove(event) {
if (event.getButton() == cc.Event.EventMouse.BUTTON_LEFT) {
this.getClickDir(event);
}
}
onLoad() {
cc.director.getCollisionManager().enabled = true;
cc.director.getPhysicsManager().enabled = true;
this.node.on(cc.Node.EventType.MOUSE_DOWN, this.onMouseDown, this);
this.node.on(cc.Node.EventType.MOUSE_MOVE, this.onMouseMove, this);
}
onDestroy() {
this.node.off(cc.Node.EventType.MOUSE_DOWN, this.onMouseDown, this);
this.node.off(cc.Node.EventType.MOUSE_MOVE, this.onMouseMove, this);
}
有了方向向量,就可以让玩家移动了,新建一个FishPlayer脚本。
为了不让玩家乱跑,我们先 build the wall:
墙上加上物理碰撞体:
然后就可以开始写FishPlayer脚本了,先把要用到的变量都定义一下:
@property(cc.Node)
camera: cc.Node = null;
@property(cc.Node)
gameManager: cc.Node = null;
game: GameManager;
speed: number = 170;
velocity: cc.Vec3 = cc.Vec3.ZERO;
在onLoad()中给game赋值:
onLoad() {
this.game = this.gameManager.getComponent("GameManager");
}
通过射线来检测边界,判断玩家是否能移动的方法:
canMove() {
var flag: boolean = true;
//前方有障碍物
var pos = this.node.convertToWorldSpaceAR(cc.Vec3.ZERO);
var endPos = pos.add(this.node.up.mul(40));
var hit: cc.PhysicsRayCastResult[] = cc.director
.getPhysicsManager()
.rayCast(
new cc.Vec2(pos.x, pos.y),
new cc.Vec2(endPos.x, endPos.y),
cc.RayCastType.All
);
if (hit.length > 0) {
flag = false;
}
return flag;
}
在update中控制玩家移动:
update(dt) {
if (this.game.dir.mag() < 0.5) {
this.velocity = cc.Vec3.ZERO;
return;
}
let vx: number = this.game.dir.x * this.speed;
let vy: number = this.game.dir.y * this.speed;
this.velocity = new cc.Vec3(vx, vy);
//移动
if (this.canMove()) {
this.node.x += vx * dt;
this.node.y += vy * dt;
}
//相机跟随
this.camera.setPosition(this.node.position);
//向运动方向旋转
let hudu = Math.atan2(this.game.dir.y, this.game.dir.x);
let angle = hudu * (180 / Math.PI);
angle = 360 - angle + 90;
this.node.angle = -angle;
}
玩家的移动逻辑写完了,接下来写鱼群。
新建一个FishGroupManager脚本和一个FishGroup脚本,FishGroupManager挂在Canvas上,FishGroup挂在player上。
FishGroupManager中定义一个静态fishGroups变量,用来管理所有Group(因为场景中可能有多个玩家,多个鱼群,现在只有一个玩家,这里方便之后扩展):
static fishGroups: FishGroup[]; //所有组
来一个把group加入groups的静态方法:
static AddGroup(group: FishGroup) {
if (this.fishGroups == null) this.fishGroups = new Array();
if (this.fishGroups.indexOf(group) == -1) this.fishGroups.push(group);
}
再来一个获取group的静态方法(根据索引获取):
static GetFishGroup(index: number) {
for (var i = 0; i < this.fishGroups.length; i++)
if (this.fishGroups[i].groupID == index) return this.fishGroups[i];
}
FishGroupManager就写完了,接下来再写FishGroup,把上面用到的groupID定义一下,还有鱼群数组:
groupID: number = 0; //组id
fishArr: cc.Component[] = new Array();
在onLoad中将自身加到fishGroups里面:
onLoad() {
FishGroupManager.AddGroup(this);
}
现在鱼群有了,但是里面一条鱼都没有,所以我们还要一个抓鱼的方法:
catchFish(fish) {
this.fishArr.push(fish);
}
再定义一些要用到的参数,FishGroup就写完了:
keepMinDistance: number = 80;
keepMaxDistance: number = 100;
keepWeight: number = 1; //成员保持距离和保持距离权重
moveWeight: number = 0.8; //和成员移动权重
接下来就到了重头戏了——鱼群中其他小鱼的运动逻辑。
直接将player复制一下,把挂载的FishPlayer和FishGroup脚本去掉,命名为fish,这就是我们的小鱼了,把它做成预制。然后新建一个FishBehaviour脚本,这个脚本挂在player和普通小鱼身上。
首先实现“抓鱼”功能,当player靠近小鱼后,小鱼就被捕获,成为该player鱼群中的一员。
定义相关变量:
@property(cc.Node)
gameManager: cc.Node = null;
game: GameManager;
isPicked: boolean = false;
pickRadius: number = 50; //抓取距离
groupId: number = -1; //组 id
myGroup: FishGroup;
同样,在onLoad()中给game赋值:
onLoad() {
this.game = this.gameManager.getComponent(GameManager);
}
判断和player距离的方法:
getPlayerDistance() {
let dist = this.node.position.sub(this.game.player.position).mag();
return dist;
}
加入鱼群方法:
onPicked() {
//设置group
this.groupId = this.game.player.getComponent(FishGroup).groupID;
this.myGroup = FishGroupManager.GetFishGroup(this.groupId);
if (this.myGroup != null) {
this.myGroup.catchFish(this);
this.isPicked = true;
}
}
在update中调用:
update(dt) {
if (this.isPicked) {
//随着鱼群移动
}
else {
if (this.getPlayerDistance() < this.pickRadius) {
this.onPicked();
}
}
}
OK,现在小鱼到鱼群中了,怎么随着鱼群一起移动呢?
这里主要有两个点:
1.小鱼会随着周围“邻居鱼”一起移动
2.小鱼之间要保持距离,不能太过拥挤
所以我们需要计算小鱼周围一定范围内鱼群运动向量的平均值,这样还不够,还要判断是否“拥挤”,“拥挤”的话就增加一个远离的趋势,太远的话就增加一个靠近的趋势,再分别乘以权重,加起来,就可以得到我们要的向量了,代码如下:
定义变量:
moveSpeed: number = 170;
rotateSpeed: number = 40; //移动旋转速度
neighborRadius: number = 500; //距离小于500算是邻居
speed: number = 0;
currentSpeed: number = 0;
myMovement: cc.Vec3 = cc.Vec3.ZERO;
求平均向量:
GetGroupMovement() {
var v1: cc.Vec3 = cc.Vec3.ZERO;
var v2: cc.Vec3 = cc.Vec3.ZERO;
for (var i = 0; i < this.myGroup.fishArr.length; i++) {
var otherFish: FishBehaviour = this.myGroup.fishArr[i].getComponent(
FishBehaviour
);
var dis = this.node.position.sub(otherFish.node.position); //距离
//不是邻居
if (dis.mag() > this.neighborRadius) {
continue;
}
var v: cc.Vec3 = cc.Vec3.ZERO;
//大于最大间隔,靠近
if (dis.mag() > this.myGroup.keepMaxDistance) {
v = dis.normalize().mul(1 - dis.mag() / this.myGroup.keepMaxDistance);
}
//小于最小间隔,远离
else if (dis.mag() < this.myGroup.keepMinDistance) {
v = dis.normalize().mul(1 - dis.mag() / this.myGroup.keepMinDistance);
} else {
continue;
}
v1 = v1.add(v); //与周围单位的距离
v2 = v2.add(otherFish.myMovement); //周围单位移动方向
}
//添加权重因素
v1 = v1.normalize().mul(this.myGroup.keepWeight);
v2 = v2.normalize().mul(this.myGroup.moveWeight);
var ret = v1.add(v2);
return ret;
}
现在,可以把update补全了:
update(dt) {
//随着鱼群移动
if (this.isPicked) {
var direction = cc.Vec3.ZERO;
if (this.node.name != "player") {
direction = direction.add(this.GetGroupMovement());
}
this.speed = cc.misc.lerp(this.speed, this.moveSpeed, 2 * dt);
this.Drive(direction, this.speed, dt); //移动
}
//捕获
else {
if (this.getPlayerDistance() < this.pickRadius) {
this.onPicked();
}
}
}
Drive()方法:
Drive(direction: cc.Vec3, spd: number, dt) {
var finialDirection: cc.Vec3 = direction.normalize();
var finialSpeed: number = spd;
var finialRotate: number = 0;
var rotateDir: number = cc.Vec3.dot(finialDirection, this.node.right);
var forwardDir: number = cc.Vec3.dot(finialDirection, this.node.up);
if (forwardDir < 0) {
rotateDir = Math.sign(rotateDir);
}
//防抖
if (forwardDir < 0.98) {
finialRotate = cc.misc.clampf(
rotateDir * 180,
-this.rotateSpeed,
this.rotateSpeed
);
}
finialSpeed *= cc.misc.clamp01(direction.mag());
finialSpeed *= cc.misc.clamp01(1 - Math.abs(rotateDir) * 0.8);
if (Math.abs(finialSpeed) < 0.01) {
finialSpeed = 0;
}
//移动
if (this.canMove()) {
this.node.x += this.node.up.x * finialSpeed * dt;
this.node.y += this.node.up.y * finialSpeed * dt;
}
//旋转
var angle1 = finialRotate * 8 * dt;
var angle2 = this.node.angle - angle1;
this.node.angle = angle2 % 360;
this.currentSpeed = finialSpeed;
this.myMovement = direction.mul(finialSpeed);
}
canMove() {
var flag: boolean = true;
//前方有障碍物
var pos = this.node.convertToWorldSpaceAR(cc.Vec3.ZERO);
var endPos = pos.add(this.node.up.mul(40));
var hit: cc.PhysicsRayCastResult[] = cc.director
.getPhysicsManager()
.rayCast(
new cc.Vec2(pos.x, pos.y),
new cc.Vec2(endPos.x, endPos.y),
cc.RayCastType.All
);
if (hit.length > 0) {
flag = false;
}
return flag;
}
最后这个Drive()方法我是拿大佬的原方法改的,里面那个“防抖”我也没弄懂啥意思,大家一起研究研究。
好了,本篇文章就到这里。