Spark 之 TaskScheduler 原理剖析

DAGSchedular 将划分的一系列 stage,按照 Stage 的先后顺序依次提交给底层的 TaskSchedular 去执行。现在就来探究下 TaskScheduler 的原理。

DAGScheduler 创建 Stage 时,已经跟踪到了 submitStage,当创建 stage 完成后,就会调用 submitMissingTasks。

submitMissingTasks 主要是将 stage 转换成 TaskSet,然后 taskScheduler.submitTasks(new TaskSet( tasks.toArray, stage.id, stage.latestInfo.attemptNumber, jobId, properties))

-- DAGScheduler.scala

  /** Called when stage's parents are available and we can now do its task. */
  private def submitMissingTasks(stage: Stage, jobId: Int) {
  // 根据 ShuffleMapStage 和 ResultStage 分别创建 TaskSet,然后调用  submitTasks 操作。
    if (tasks.nonEmpty) {
      logInfo(s"Submitting ${tasks.size} missing tasks from $stage (${stage.rdd}) (first 15 " +
        s"tasks are for partitions ${tasks.take(15).map(_.partitionId)})")
        /* *调用 submitTasks 将 task 提交给 TaskScheduler,这里使用了 TaskSet 进行封装
        *  TaskSet 的第一个参数:tasks,
        * 第二个参数:task对应所属的 stage id,
        * 第三个参数:尝试的 id
        * 第四个参数:优先级
        * 第五个参数:与此阶段关联的ActiveJob中的计划池、作业组、说明
        */
      taskScheduler.submitTasks(new TaskSet(
        tasks.toArray, stage.id, stage.latestInfo.attemptNumber, jobId, properties))
    } else {
      // Because we posted SparkListenerStageSubmitted earlier, we should mark
      // the stage as completed here in case there are no tasks to run
      markStageAsFinished(stage, None)
    }
  }

TaskScheduler 的实现是在 TaskSchedulerImpl 中,所以

-- TaskSchedulerImpl.scala

  override def submitTasks(taskSet: TaskSet) {
    val tasks = taskSet.tasks
    logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
    this.synchronized { // 同步代码块
    /**
    *  创建一个 TaskSetManager 来封装 TaskSet 和最大失败次数 maxTaskFailures。
    */
      val manager = createTaskSetManager(taskSet, maxTaskFailures)
      val stage = taskSet.stageId
      val stageTaskSets =
        taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])
       // 保证所有 TaskManager 处于非启动状态。
      stageTaskSets.foreach { case (_, ts) =>
        ts.isZombie = true
      }
      stageTaskSets(taskSet.stageAttemptId) = manager
    /**
    * schedulableBuilder 有两种方式: FIFOSchedulableBuilder,FairSchedulableBuilder,
    * 默认为   FIFOSchedulableBuilder。SchedulableBuilder 其实就是一个Scheduler pool。
    */
      schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)
      
      hasReceivedTask = true
    }
    backend.reviveOffers()
  }

最后就到了 backend.reviveOffers(),这里又是 SchedulerBackend,就进入到到了 CoarseGrainedSchedulerBackend

一个等待粗粒度执行器连接的调度的后端程序。这个后端程序在 spark 作业期间将会持有每个执行器,而且也不会在任务完成时放弃执行器, 并要求调度程序为每个新任务启动一个新的执行器。

-- CoarseGrainedSchedulerBackend.scala

  override def reviveOffers() {
    driverEndpoint.send(ReviveOffers)
  }

Message 发送成功后,接下来就执行…

-- CoarseGrainedSchedulerBackend.scala

override def receive: PartialFunction[Any, Unit] = {
  case ReviveOffers =>
    makeOffers()
}

就是为所有 executor 分配 fake resource。

-- CoarseGrainedSchedulerBackend.scala

private def makeOffers() {
  // 确保在 task 被启动时,没有 executor 被 kill。
  val taskDescs = withLock {
    val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
    val workOffers = activeExecutors.map {
      case (id, executorData) =>
      // workerOffer 代表着有可以资源的 executor
        new WorkerOffer(id, executorData.executorHost, executorData.freeCores,
          Some(executorData.executorAddress.hostPort),
          executorData.resourcesInfo.map { case (rName, rInfo) =>
            (rName, rInfo.availableAddrs.toBuffer)
          })
    }.toIndexedSeq
    // cluster manager 分配资源给 slave。
    scheduler.resourceOffers(workOffers)
  }
  if (taskDescs.nonEmpty) {
    launchTasks(taskDescs)
  }
}

先来看看 scheduler.resourceOffers(workOffers),来分析是如何分配资源给 slaves。

-- TaskSchedulerImpl.scala

def resourceOffers(offers: IndexedSeq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
    // 标记每个存活的 slave,记下其 hostname,
    var newExecAvail = false
    for (o <- offers) {
    // 遍历所有的 hostToExecutor,这是一个 hashMap。如果是新增加的 executor,那么就将其添加进来。
      if (!hostToExecutors.contains(o.host)) {
        hostToExecutors(o.host) = new HashSet[String]()
      }
    //  如果 task 没有在 Executor上运行,那么就添加 task id 到 executorIdToRunningTaskIds
    //  同时激活 newExecAvail 标志位,这样就可以后续进行添加了。
      if (!executorIdToRunningTaskIds.contains(o.executorId)) {
        hostToExecutors(o.host) += o.executorId
        executorAdded(o.executorId, o.host)
        executorIdToHost(o.executorId) = o.host
        executorIdToRunningTaskIds(o.executorId) = HashSet[Long]()
        newExecAvail = true
      }
    }
    val hosts = offers.map(_.host).toSet.toSeq
    for ((host, Some(rack)) <- hosts.zip(getRacksForHosts(hosts))) {
      hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += host
    }

   // 过滤掉黑名单中的节点。
    blacklistTrackerOpt.foreach(_.applyBlacklistTimeout())

    val filteredOffers = blacklistTrackerOpt.map { blacklistTracker =>
      offers.filter { offer =>
        !blacklistTracker.isNodeBlacklisted(offer.host) &&
          !blacklistTracker.isExecutorBlacklisted(offer.executorId)
      }
    }.getOrElse(offers)
   
   // 将过滤后的 Node 节点 进行洗牌操作,防止将 task 总是放在一个 worker node 上。
    val shuffledOffers = shuffleOffers(filteredOffers)
    // 建立要分配给每个 worker 的任务列表。
    // CPUS_PER_TASK 默认为 1,意味着:每个 task 分配一个 CPU。
    val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores / CPUS_PER_TASK))
    val availableResources = shuffledOffers.map(_.resources).toArray
    val availableCpus = shuffledOffers.map(o => o.cores).toArray
    val availableSlots = shuffledOffers.map(o => o.cores / CPUS_PER_TASK).sum
    val sortedTaskSets = rootPool.getSortedTaskSetQueue
    for (taskSet <- sortedTaskSets) {
      logDebug("parentName: %s, name: %s, runningTasks: %s".format(
        taskSet.parent.name, taskSet.name, taskSet.runningTasks))
      if (newExecAvail) {
        taskSet.executorAdded()
      }
    }

    // 把每个 taskSet 放在调度顺序最后那个,然后提供它的每个节点本地性的级别的递增顺序,
    // 以便它有机会启动所有任务的本地任务
    // 数据本地性的优先级别顺序:PROCESS_LOCAL, NODE_LOCAL,  NO_PREF, RACK_LOCAL, ANY
    for (taskSet <- sortedTaskSets) {
      //  如果可用插槽少于挂起任务的数量,则跳过 barrier 任务集。 
      if (taskSet.isBarrier && availableSlots < taskSet.numTasks) {
        // 跳过启动过程
      } else {
        var launchedAnyTask = false
        // Record all the executor IDs assigned barrier tasks on.
        val addressesWithDescs = ArrayBuffer[(String, TaskDescription)]()
        /**
        * 循环遍历 sortedTaskSet, 对其中的每个 taskSet,首先考虑 myLocalityLevels。
        *  myLocalityLevels 计算数据本定型的 level,
        *  将 PROCESS_LOCAL, NODE_LOCAL,  NO_PREF, RACK_LOCAL, ANY 都循环一遍。
        */
        for (currentMaxLocality <- taskSet.myLocalityLevels) {
          var launchedTaskAtCurrentMaxLocality = false
          do {
            launchedTaskAtCurrentMaxLocality = resourceOfferSingleTaskSet(taskSet,
              currentMaxLocality, shuffledOffers, availableCpus,
              availableResources, tasks, addressesWithDescs)
            launchedAnyTask |= launchedTaskAtCurrentMaxLocality
          } while (launchedTaskAtCurrentMaxLocality)
        }
        ...
      }
    }
    return tasks
  }

再从 makeOffers 看最后一条代码 launchTasks(taskDescs)

-- CoarseGrainedSchedulerBackend.scala

if (taskDescs.nonEmpty) {
  launchTasks(taskDescs)
}

private def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
  for (task <- tasks.flatten) {
  // 对 task 进行序列化
    val serializedTask = TaskDescription.encode(task)
    // 序列化的大小进行比较,必须必与设定的值要小才可以,maxRpcMessageSize 默认为 128.
    if (serializedTask.limit() >= maxRpcMessageSize) {
      Option(scheduler.taskIdToTaskSetManager.get(task.taskId)).foreach { taskSetMgr =>
        try {
          var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
            s"${RPC_MESSAGE_MAX_SIZE.key} (%d bytes). Consider increasing " +
            s"${RPC_MESSAGE_MAX_SIZE.key} or using broadcast variables for large values."
          msg = msg.format(task.taskId, task.index, serializedTask.limit(), maxRpcMessageSize)
          taskSetMgr.abort(msg)
        } catch {
          case e: Exception => logError("Exception in error callback", e)
        }
      }
    }
    else {  // 满足限定条件。
      val executorData = executorDataMap(task.executorId)
      // 资源分配,在 task 完成以后,分配的资源将被释放。
      executorData.freeCores -= scheduler.CPUS_PER_TASK
      task.resources.foreach { case (rName, rInfo) =>
        assert(executorData.resourcesInfo.contains(rName))
        executorData.resourcesInfo(rName).acquire(rInfo.addresses)
      }
      // 将 task 发送到 worker 的 executor。
      executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
    }
  }
}

executor 接收到 data,就开始 decode 出来。从这里其实看出 driver 到 executor, 都有XXXXBackend 在后台进行处理。

--  CoarseGrainedExecutorBackend.scala

  override def receive: PartialFunction[Any, Unit] = {
    case LaunchTask(data) =>
      if (executor == null) {
        exitExecutor(1, "Received LaunchTask command but executor was null")
      } else {
        val taskDesc = TaskDescription.decode(data.value)
        logInfo("Got assigned task " + taskDesc.taskId)
        taskResources(taskDesc.taskId) = taskDesc.resources
        executor.launchTask(this, taskDesc)
      }
  }

Spark 之 TaskScheduler 原理剖析_第1张图片

你可能感兴趣的:(Spark)