Kakfa 快速入门

kafka是一个分布式消息队列。具有高性能、持久化、多副本备份、横向扩展能力。生产者往队列里写消息,消费者从队列里取消息进行业务逻辑。一般在架构设计中起到解耦、削峰、异步处理的作用。

kafka对外使用topic的概念,生产者往topic里写消息,消费者从读消息。为了做到水平扩展,一个topic实际是由多个partition组成的,遇到瓶颈时,可以通过增加partition的数量来进行横向扩容。单个parition内是保证消息有序。

1、生产

现在先看下生产者写消息的基本流程:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3MbMVd7L-1588823006862)(http://pfp.ps.netease.com/kmspvt/file/5ea7e64968d8644c6795a8894vsOCFfp01?sign=46Eo8xzgYXYulbR8AHPDo_S5BSk=&expire=1588840985)]

流程如下:

  • 首先,我们需要创建一个ProducerRecord,这个对象需要包含消息的主题(topic)和值(value),可以选择性指定一个键值(key)或者分区(partition)。
  • 发送消息时,生产者会对键值和值序列化成字节数组,然后发送到分配器(partitioner)。
  • 如果我们指定了分区,那么分配器返回该分区即可;否则,分配器将会基于键值来选择一个分区并返回。****
  • 选择完分区后,生产者知道了消息所属的主题和分区,它将这条记录添加到相同主题和分区的批量消息中,另一个线程负责发送这些批量消息到对应的Kafka broker。
  • 当broker接收到消息后,如果成功写入则返回一个包含消息的主题、分区及位移的RecordMetadata对象,否则返回异常。
  • 生产者接收到结果后,对于异常可能会进行重试。

kafka produce都是批量请求,会积攒一批,然后一起发送,不是调send()就进行立刻进行网络发包。

1.1 创建Kafka生产者

创建Kafka生产者有三个基本属性:

bootstrap.servers:属性值是一个host:port的broker列表。这个属性指定了生产者建立初始连接的broker列表,这个列表不需要包含所有的broker,因为生产者建立初始连接后会从相应的broker获取到集群信息。但建议指定至少包含两个broker,这样一个broker宕机后生产者可以连接到另一个broker。

key.serializer:属性值是类的名称。这个属性指定了用来序列化键值(key)的类。Kafka broker只接受字节数组,但生产者的发送消息接口允许发送任何的Java对象,因此需要将这些对象序列化成字节数组。key.serializer指定的类需要实现org.apache.kafka.common.serialization.Serializer接口,Kafka客户端包中包含了几个默认实现,例如ByteArraySerializer、StringSerializer和IntegerSerializer。
value.serializer:属性值是类的名称。这个属性指定了用来序列化消息记录的类,与key.serializer差不多。

下面是一个样例代码:

private Properties kafkaProps = new Properties();
kafkaProps.put("bootstrap.servers", "broker1:9092,broker2:9092");
kafkaProps.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
kafkaProps.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

producer = new KafkaProducer(kafkaProps);
1.2 发送消息到Kafka

创建完生产者后,我们可以发送消息。Kafka中有三种发送消息的方式:

  • 只发不管结果(fire-and-forget):只调用接口发送消息到Kafka服务器,但不管成功写入与否。由于Kafka是高可用的,因此大部分情况下消息都会写入,但在异常情况下会丢消息。
  • 同步发送(Synchronous send):调用send()方法返回一个Future对象,我们可以使用它的get()方法来判断消息发送成功与否。
  • 异步发送(Asynchronous send):调用send()时提供一个回调方法,当接收到broker结果后回调此方法。
    本章的例子都是单线程发送的,但生产者对象是线程安全的,它支持多线程发送消息来提高吞吐。需要的话,我们可以使用多个生产者对象来进一步提高吞吐。

同步发送消息:

ProducerRecord record = new ProducerRecord("CustomerCountry", "Precision Products", "France");

try {
  producer.send(record).get();
} catch (Exception e) {
  e.printStackTrace();
}
  • 我们创建了一个ProducerRecord,并且指定了主题以及消息的key/value。主题总是字符串类型的,但key/value则可以是任意类型,在本例中也是字符串。需要注意的是,这里的key/value的类型需要与serializer和生产者的类型匹配。
  • 这里使用了Future.get()来获取发送结果,如果发送消息失败则会抛出异常,否则返回一个RecordMetadata对象。发送失败异常包含:1)broker返回不可恢复异常,生产者直接抛出该异常;2)对于broker其他异常,生产者会进行重试,如果重试超过一定次数仍不成功则抛出异常。

异步发送消息的样例如下:

private class DemoProducerCallback implements Callback {
  @Override
  public void onCompletion(RecordMetadata recordMetadata, Exception e) {
    if (e != null) {
	  e.printStackTrace();
	}
  }
}

ProducerRecord record = new ProducerRecord("CustomerCountry", "Precision Products", "France");

producer.send(record, new DemoProducerCallback());

异步回调的类需要实现org.apache.kafka.clients.producer.Callback接口,这个接口只有一个onCompletion方法。当Kafka返回异常时,异常值不为null,代码中只是简单的打印,但我们可以采取其他处理方式。

1.3 生产者的配置

acks: acks控制多少个副本必须写入消息后生产者才能认为写入成功,这个参数对消息丢失可能性有很大影响。这个参数有三种取值:

  • acks=0:生产者把消息发送到broker即认为成功,不等待broker的处理结果。这种方式的吞吐最高,但也是最容易丢失消息的。
  • acks=1:生产者会在该分区的群首(leader)写入消息并返回成功后,认为消息发送成功。如果群首写入消息失败,生产者会收到错误响应并进行重试。这种方式能够一定程度避免消息丢失,但如果群首宕机时该消息没有复制到其他副本,那么该消息还是会丢失。另外,如果我们使用同步方式来发送,延迟会比前一种方式大大增加(至少增加一个网络往返时间);如果使用异步方式,应用感知不到延迟,吞吐量则会受异步正在发送中的数量限制。
  • acks=all:生产者会等待所有副本成功写入该消息,这种方式是最安全的,能够保证消息不丢失,但是延迟也是最大的。

buffer.memory
此参数用来设置生产者内存缓冲区的大小,生产者用它缓冲要发送到服务器的消息。如果应用程序发送消息的速度到缓存区的速度超过发送到broker(服务器)的速度,会导致生产者空间不足。这个时候,send() 方法调用生产者会被阻塞(根据max.block.ms配置的时间,默认为60000ms=1分钟,在0.9.0.0版本之前使用block.on.buffer.full配置),之后会抛出异常。

compresstion.type
默认情况下消息是不压缩的,这个参数可以指定使用消息压缩,参数可以取值为snappy、gzip或者lz4。snappy压缩算法由Google研发,这种算法在性能和压缩比取得比较好的平衡;相比之下,gzip消耗更多的CPU资源,但是压缩效果也是最好的。通过使用压缩,我们可以节省网络带宽和Kafka存储成本。

retries
当生产者发送消息收到一个可恢复异常时,会进行重试,这个参数指定了重试的次数。在实际情况中,这个参数需要结合retry.backoff.ms(重试等待间隔)来使用,建议总的重试时间比集群重新选举群首的时间长,这样可以避免生产者过早结束重试导致失败。

batch.size
当多条消息发送到一个分区时,生产者会进行批量发送,这个参数指定了批量消息的大小上限(以字节为单位)。当批量消息达到这个大小时,生产者会一起发送到broker;但即使没有达到这个大小,生产者也会有定时机制来发送消息,避免消息延迟过大。

linger.ms
这个参数指定生产者在发送批量消息前等待的时间,当设置此参数后,即便没有达到批量消息的指定大小,到达时间后生产者也会发送批量消息到broker。默认情况下,生产者的发送消息线程只要空闲了就会发送消息,即便只有一条消息。设置这个参数后,发送线程会等待一定的时间,这样可以批量发送消息增加吞吐量,但同时也会增加延迟。

client.id
这个参数可以是任意字符串,它是broker用来识别消息是来自哪个客户端的。在broker进行打印日志、衡量指标或者配额限制时会用到。

max.in.flight.requests.per.connection

此配置设置客户端在单个连接上能够发送的未确认请求的最大数量,默认为5,超过此数量会造成阻塞。设置大的值可以提高吞吐量但会增加内存使用,但是需要注意的是,当设置值大于1而且发送失败时,如果启用了重试配置,有可能会改变消息的顺序。设置为1时,即使重新发送消息,也可以保证发送的顺序和写入的顺序一致。

max.request.size
这个参数限制生产者发送数据包的大小,数据包的大小与消息的大小、消息数相关。如果我们指定了最大数据包大小为1M,那么最大的消息大小为1M,或者能够最多批量发送1000条消息大小为1K的消息。另外,broker也有message.max.bytes参数来控制接收的数据包大小。在实际中,建议这些参数值是匹配的,避免生产者发送了超过broker限定的数据大小。
具体解释可参考:https://juejin.im/post/5cdc5c6bf265da038145fd9f

1.4 分区

我们创建消息的时候,必须要提供主题和消息的内容,而消息的key是可选的,当不指定key时默认为null。消息的key有两个重要的作用:1)提供描述消息的额外信息;2)用来决定消息写入到哪个分区,所有具有相同key的消息会分配到同一个分区中。

如果key为null,那么生产者会使用默认的分配器,该分配器使用轮询(round-robin)算法来将消息均衡到所有分区。

如果key不为null而且使用的是默认的分配器,那么生产者会对key进行哈希并根据结果将消息分配到特定的分区。注意的是,在计算消息与分区的映射关系时,使用的是全部的分区数而不仅仅是可用的分区数。这也意味着,如果某个分区不可用(虽然使用复制方案的话这极少发生),而消息刚好被分配到该分区,那么将会写入失败。另外,如果需要增加额外的分区,那么消息与分区的映射关系将会发生改变,因此尽量避免这种情况。
自定义分配器

现在来看下如何自定义一个分配器,下面将key为Banana的消息单独放在一个分区,与其他的消息进行分区隔离:

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.record.InvalidRecordException;
import org.apache.kafka.common.utils.Utils;

public class BananaPartitioner implements Partitioner {
    public void configure(Map configs) {}
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
    
    List partitions = cluster.partitionsForTopic(topic);
    int numPartitions = partitions.size();
    if ((keyBytes == null) || (!(key instanceOf String)))
        throw new InvalidRecordException("We expect all messages to have customer name as key")
    if (((String) key).equals("Banana"))
        return numPartitions; // Banana will always go to last partition
   
     // Other records will get hashed to the rest of the partitions
    return (Math.abs(Utils.murmur2(keyBytes)) % (numPartitions - 1))
    }
    
    public void close() {}
 
}

2、消费

2.1 Kafka消费者相关的概念

消费者与消费组
假设这么个场景:我们从Kafka中读取消息,并且进行检查,最后产生结果数据。我们可以创建一个消费者实例去做这件事情,但如果生产者写入消息的速度比消费者读取的速度快怎么办呢?这样随着时间增长,消息堆积越来越严重。对于这种场景,我们需要增加多个消费者来进行水平扩展。

Kafka消费者是消费组的一部分,当多个消费者形成一个消费组来消费主题时,每个消费者会收到不同分区的消息。假设有一个T1主题,该主题有4个分区;同时我们有一个消费组G1,这个消费组只有一个消费者C1。那么消费者C1将会收到这4个分区的消息,如下所示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qsWRHdie-1588823006867)(http://pfp.ps.netease.com/kmspvt/file/5ea944ca68d86442b2ae8d59ed4PdvrX01?sign=5Dvnh54iCoSESP41zIzJsE-Uts0=&expire=1588840985)]
如果增加到4个消费者,那么每个消费者将会分别收到一个分区的消息,如下所示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dqBr0kLq-1588823006877)(http://pfp.ps.netease.com/kmspvt/file/5ea945ce2dcadecf7e57e565Ae2BKVT901?sign=Ek4a43WWniQBUo8r8qQX4BQZsAk=&expire=1588840985)]
但如果我们继续增加消费者到这个消费组,剩余的消费者将会空闲,不会收到任何消息。

2.2 消费组与分区重平衡

可以看到,当新的消费者加入消费组,它会消费一个或多个分区,而这些分区之前是由其他消费者负责的;另外,当消费者离开消费组(比如重启、宕机等)时,它所消费的分区会分配给其他分区。这种现象称为重平衡(rebalance)。重平衡是Kafka一个很重要的性质,这个性质保证了高可用和水平扩展。不过也需要注意到,在重平衡期间,所有消费者都不能消费消息,因此会造成整个消费组短暂的不可用。而且,将分区进行重平衡也会导致原来的消费者状态过期,从而导致消费者需要重新更新状态,这段期间也会降低消费性能。后面我们会讨论如何安全的进行重平衡以及如何尽可能避免。

消费者通过定期发送心跳(hearbeat)到一个作为组协调者(group coordinator)的broker来保持在消费组内存活。这个broker不是固定的,每个消费组都可能不同。当消费者拉取消息或者提交时,便会发送心跳。

如果消费者超过一定时间没有发送心跳,那么它的会话(session)就会过期,组协调者会认为该消费者已经宕机,然后触发重平衡。可以看到,从消费者宕机到会话过期是有一定时间的,这段时间内该消费者的分区都不能进行消息消费;通常情况下,我们可以进行优雅关闭,这样消费者会发送离开的消息到组协调者,这样组协调者可以立即进行重平衡而不需要等待会话过期。

在0.10.1版本,Kafka对心跳机制进行了修改,将发送心跳与拉取消息进行分离,这样使得发送心跳的频率不受拉取的频率影响。另外更高版本的Kafka支持配置一个消费者多长时间不拉取消息但仍然保持存活,这个配置可以避免活锁(livelock)。活锁,是指应用没有故障但是由于某些原因不能进一步消费。

2.3 创建Kafka消费者

读取Kafka消息只需要创建一个kafkaConsumer,创建过程与KafkaProducer非常相像。我们需要使用四个基本属性,bootstrap.servers、key.deserializer、value.deserializer和group.id。其中,bootstrap.servers与创建KafkaProducer的含义一样;key.deserializer和value.deserializer是用来做反序列化的,也就是将字节数组转换成对象;group.id不是严格必须的,但通常都会指定,这个参数是消费者的消费组。

下面是一个代码样例
Properties props = new Properties(); props.put("bootstrap.servers", "broker1:9092,broker2:9092"); props.put("group.id", "CountryCounter"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer consumer = new KafkaConsumer(props);

订阅主题
创建完消费者后我们便可以订阅主题了,只需要通过调用subscribe()方法即可,这个方法接收一个主题列表,非常简单:

nsumer.subscribe(Collections.singletonList("customerCountries"));

拉取循环
消费数据的API和处理方式很简单,我们只需要循环不断拉取消息即可。Kafka对外暴露了一个非常简洁的poll方法,其内部实现了协作、分区重平衡、心跳、数据拉取等功能,但使用时这些细节都被隐藏了,我们也不需要关注这些。下面是一个代码样例:

try {
   while (true) {  //1)
       ConsumerRecords records = consumer.poll(100);  //2)
       for (ConsumerRecord record : records)  //3)
       {
           log.debug("topic = %s, partition = %s, offset = %d,
              customer = %s, country = %s\n",
              record.topic(), record.partition(), record.offset(),
              record.key(), record.value());
           int updatedCount = 1;
           if (custCountryMap.countainsValue(record.value())) {
               updatedCount = custCountryMap.get(record.value()) + 1;
           }
           custCountryMap.put(record.value(), updatedCount)
           JSONObject json = new JSONObject(custCountryMap);
           System.out.println(json.toString(4))
       }
   }
} finally {
      consumer.close(); //4
}

其中,代码中标注了几点,说明如下:

1)这个例子使用无限循环消费并处理数据,这也是使用Kafka最多的一个场景,后面我们会讨论如何更好的退出循环并关闭。
2)这是上面代码中最核心的一行代码。我们不断调用poll拉取数据,如果停止拉取,那么Kafka会认为此消费者已经死亡并进行重平衡。参数值是一个超时时间,指明线程如果没有数据时等待多长时间,0表示不等待立即返回。
3)poll()方法返回记录的列表,每条记录包含key/value以及主题、分区、位移信息。
4)主动关闭可以使得Kafka立即进行重平衡而不需要等待会话过期。
另外需要提醒的是,消费者对象不是线程安全的,也就是不能够多个线程同时使用一个消费者对象;而且也不能够一个线程有多个消费者对象。简而言之,一个线程一个消费者,如果需要多个消费者那么请使用多线程来进行一一对应。

你可能感兴趣的:(大数据之路)