- 线性回归(1)
zidea
MachineLearninginMarketing感谢李宏毅《回归-案例研究》部分内容为听取李宏毅老师讲座的笔记,也融入了自己对机器学习理解,个人推荐李宏毅老师的机器学习系列课程,尤其对于初学者强烈推荐。课程设计相对其他课程要容易理解。在机器学习中算法通常分为回归和分类两种,今天我们探讨什么线性回归。以及如何设计一个线性回归模型。什么回归简单理解通过数据最终预测出来一个值。回归问题的实例就是找到
- 从零开始学Python系列课程第07课:Python的输入和输出函数
HerrFu
Python基础python开发语言学习
在程序的执行过程中,可能我们有需要与程序进行交互的地方,那么这些交互应该怎样去编写,是我们需要思考的问题,为此Python提供了输入和输出函数,以便我们和程序之间的简单交互操作。一、输入函数——input我们借助input函数,能够将我们所想的数据传入到程序中,如下例子:str_1=input()此时程序执行时便会要求我们输入内容,输入的内容会被保存到变量str_1中,另外,无论输入函数input
- 从零开始学Python系列课程第02课:Python环境搭建
HerrFu
Python基础python开发语言学习
学习一门新的编程语言,少不了安装各种各样的软件和配置各种各样的环境,为此,给学习本门课程的同学准备了一份环境安装指南,接下来请认真食用。一、安装包下载Python官网:https://www.python.org/上述界面为Python官网首页,在Downloads选项可以下载到Windows、Mac、Linux的Python安装程序或二进制文件。大家可以自行查看官网内容获取Python的安装包,
- 从零开始学Python系列课程第04课:编写并运行Python程序
HerrFu
Python基础pythonpycharm开发语言
在前几篇文章中,我们已经了解了Python语言、安装了运行和编写Python程序所必需的环境、创建了一个新的Python项目,相信大家已经迫不及待的想开始自己的Python编程之旅了。一、创建Python文件书接上文,在讲述了PyCharm如何创建项目之后,还不能直接写代码,还需要创建一个能够承载Python代码的文件,这个文件的后缀名为.py,请看下方截图,如何创建:在前面创建好的Python项
- 从零开始学Python系列课程第01课:Python认知
HerrFu
Python基础python开发语言学习
学习一门编程语言,我们首先要知道这门语言的身世,这样才能够更好的帮助我们了解和认识它!Python是由荷兰数学和计算机科学研究学会的GuidovanRossum(吉多·范罗苏姆,以下简称:吉多大爷)于1990年初设计,准备用Python作为一门叫做ABC语言的替代品。ABC语言ABC语言是NWO(荷兰科学研究组织)旗下CWI(荷兰国家数学与计算机科学研究中心)的LeoGrurts、LambertM
- 从零开始学Python系列课程第14课:Python中的循环结构(下)
HerrFu
Python基础python开发语言学习
在本篇文章中,我们对上文讲过的循环结构做少许补充,除去for-in循环和while循环,其实还存在for-else结构和while-else结构。只是这在编程语言界,Python属于独一份了,独一份循环结构还可以与else关键字一起使用的编程语言,不过这种用法哪怕在Python中也是比较小众。哪怕用到,绝大部分场景也是给到for-else结构,今天我们以for-else结构为例,为大家讲解如何使用
- 从零开始学Python系列课程第16课:Python常见容器型数据类型介绍
HerrFu
Python基础python开发语言学习
Python中有个容器的知识点非常重要,一定要认真学习。我们把可以包含其他数据的数据类型,称之为容器,我们将Python中常用的容器划分为三种:内容连续、有顺序、可以使用下标索引的一类数据容器,我们称之为序列,Python中的列表、字符串、元组都属于序列。在数学里,映射是一个术语,指两个数据集中的元素存在相互对应的关系,称为映射,Python的字典中的元素就具有这样的对应关系。既没有序列的特性,也
- 从零开始学Python系列课程第13课:Python中的循环结构(上)
HerrFu
Python基础python开发语言学习
一、循环结构的应用场景及分类我们在编写程序时,一定会遇到需要重复执行某些指令的场景。举一个简单的例子,在前面讲分支结构时以游戏通关为例,如果第一关结束时分值不够则通关失败需要重新闯关,重新闯关这就是一个重复性的动作,类似的还有很多相似场景,代入编程中就可以使用循环来解决这类问题,这就是我们今天要讲的“循环结构”。所谓循环结构,就是程序中控制某条或某些指令重复执行的结构。在Python中构造循环结构
- 从零开始学Python系列课程第15课:range 方法详解
HerrFu
Python基础python开发语言学习
在循环结构上篇讲述for-in循环时,有一个range方法的知识点没给大家讲,本篇文章我们单独给大家做一个详细讲解。range方法的作用就是根据给定的start、stop、step三个参数,生成一个包含有规律整数的容器。以下是range的语法规则:range(start,stop,step)我们对这几个参数做出解释:可以理解start为左闭区间,stop为右开区间,step为等差序列的差;rang
- 人工智能 python入门体验课_Python系列课程——人工智能篇简单入门
weixin_39536427
人工智能python入门体验课
1、基础篇——基于Python的机器学习现在大热、为未来计算机科学发展方向的机器学习了解多少呢?下面推荐的这个内容比较适合小白,如果数学、模型理论基础不扎实也没关系,可以掌握Python编程语言基本可以轻松学习~例如利用Python编程语言实现线性分类器、支持向量机、朴素贝叶斯等经典机器学习模型来解决诸如肿瘤良恶性预测、手写体识别、泰坦尼克号生还预测等实际问题。并就模型本身泛化力问题(过拟合、欠拟
- 机器学习笔记03_机器学习基本概念(下)
三木今天学习了嘛
机器学习机器学习深度学习人工智能
学习视频:[中英字幕]吴恩达机器学习系列课程学习资料:https://github.com/fengdu78/Coursera-ML-AndrewNg-NotesGitHub不好用的话,我在CSDN资源区也上传了开源资料,0积分下载,期待和大家一起进步!文章目录12聚类Clustering12.1无监督学习UnsupervisedLearning12.2K-均值算法K-MeansAlgorithm
- 吴恩达《机器学习》1-4:无监督学习
不吃花椒的兔酱
机器学习机器学习学习笔记
一、无监督学习无监督学习就像你拿到一堆未分类的东西,没有标签告诉你它们是什么,然后你的任务是自己找出它们之间的关系或者分成不同的组,而不依赖于任何人给你关于这些东西的指导。以聚类为例,无监督学习算法可以将数据点分成具有相似特征的群组,而不需要提前告知每个数据点属于哪个群组。二、聚类算法将数据集中的对象分成具有相似特征或属性的组,这些组通常称为簇。参考资料:[中英字幕]吴恩达机器学习系列课程黄海广博
- 【李宏毅机器学习·学习笔记】Deep Learning General Guidance
MilkLeong
李宏毅机器学习Python机器学习机器学习深度学习学习
本节课可视为机器学习系列课程的一个前期攻略,这节课主要对MachineLearning的框架进行了简单的介绍;并以trainingdata上的loss大小为切入点,介绍了几种常见的在模型训练的过程中容易出现的情况。课程视频:Youtube:https://www.youtube.com/watch?v=WeHM2xpYQpw课程PPT:https://view.officeapps.live.co
- 机器学习比较好的视频资源
无敌三角猫
深度学习人工智能机器学习
吴恩达,经典入门课程。[中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibiliwww.bilibili.com/video/BV164411b7dx?spm_id_from=333.999.0.0正在上传…重新上传取消[双语字幕]吴恩达深度学习deeplearning.ai_哔哩哔哩_bilibiliwww.bilibili.com/video/BV1FT4y1E74V?from=searc
- python网课人工智能,Python系列课程——人工智能篇简单入门
爬山小虎哥
python网课人工智能
1、基础篇——基于Python的机器学习>>>>>>现在大热、为未来计算机科学发展方向的机器学习了解多少呢?下面推荐的这个内容比较适合小白,如果数学、模型理论基础不扎实也没关系,可以掌握Python编程语言基本可以轻松学习~例如利用Python编程语言实现线性分类器、支持向量机、朴素贝叶斯等经典机器学习模型来解决诸如肿瘤良恶性预测、手写体识别、泰坦尼克号生还预测等实际问题。并就模型本身泛化力问题(
- 【经典】吴恩达——机器学习笔记001
superME1226
机器学习机器学习算法
【经典】吴恩达——机器学习笔记001机器学习(MachineLearning)笔记001学习地址:[中英字幕]吴恩达机器学习系列课程文字版参考及PPT来源:Coursera-ML-AndrewNg-Notes听从学长的建议,将吴恩达教授的DL和ML视频作为CV入门学习,本博客为个人学习笔记,旨在记录学习所得,欢迎小伙伴们一起交流学习,批评指正!第二章:【经典】吴恩达——机器学习笔记002课程总述M
- 【CV】吴恩达机器学习课程笔记第18章
Fannnnf
吴恩达机器学习课程笔记机器学习人工智能
本系列文章如果没有特殊说明,正文内容均解释的是文字上方的图片机器学习|Coursera吴恩达机器学习系列课程_bilibili目录18应用案例:照片OCR18-1问题描述与流程(pipeline)18-2滑动窗口(slidingwindows)分类器18-3获取大量数据和人工数据合成18-4上限分析:下一步要做流水线中的哪一个18应用案例:照片OCR18-1问题描述与流程(pipeline)1.找
- 吴恩达机器学习系列课程笔记——第五章:Octave教程(Octave Tutorial)
Lishier99
机器学习机器学习人工智能
提示:这章选学,可以去学python,第六节可以看看。5.1基本操作https://www.bilibili.com/video/BV164411b7dx?p=26本章学习以种编程语言:Octave语言。你能够用它来非常迅速地实现这门课中我们已经学过的,或者将要学的机器学习算法。过去我一直尝试用不同的编程语言来教授机器学习,包括C++、Java、Python、Numpy和Octave。我发现当使用
- 吴恩达机器学习系列课程笔记——第十四章:降维(Dimensionality Reduction)
Lishier99
机器学习机器学习人工智能算法学习
14.1动机一:数据压缩https://www.bilibili.com/video/BV164411b7dx?p=79这个视频,我想开始谈论第二种类型的无监督学习问题,称为降维。有几个不同的的原因使你可能想要做降维。一是数据压缩,后面我们会看了一些视频后,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快我们的学习算法。但首先,让我们谈论降维是什么。作为一种生动的
- 吴恩达机器学习系列课程笔记——第十一章:机器学习系统的设计(Machine Learning System Design)
Lishier99
机器学习机器学习人工智能算法
11.1首先要做什么https://www.bilibili.com/video/BV164411b7dx?p=65在接下来的视频中,我将谈到机器学习系统的设计。这些视频将谈及在设计复杂的机器学习系统时,你将遇到的主要问题。同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议。下面的课程的的数学性可能不是那么强,但是我认为我们将要讲到的这些东西是非常有用的,可能在构建大型的机器学习系
- python数据分析、整理、汇总展示_python-数据分析与展示(Numpy、matplotlib、pandas)---2...
weixin_39525118
python数据分析整理汇总展示
笔记内容整理自mooc上北京理工大学嵩天老师python系列课程数据分析与展示,本人小白一枚,如有不对,多加指正1.python自带的图像库PIL1.1常用APIImage.open()Image.fromarray()im.save()convert('L')b.astype('uint8')(这个API用于处理后的数组改变元素的数据类型,科学计算python不同于C++等编程语言,操作之后,数
- 吴恩达机器学习课程笔记:监督学习、无监督学习
Uncertainty!!
机器学习基础监督学习无监督学习
1.吴恩达机器学习课程笔记:监督学习、无监督学习吴恩达机器学习系列课程:监督学习吴恩达机器学习系列课程:无监督学习仅作为个人学习笔记,若各位大佬发现错误请指正机器学习的学习算法:监督学习、无监督学习、半监督学习(监督与无监督的结合)、强化学习监督学习与无监督学习的根本区别:监督学习的数据既有特征又有标签,而非监督学习的数据中只有特征而没有标签。(例如:身高属于特征,标签是高或矮)左侧为监督学习针对
- 机器学习(正在更新)
小小怪将军!
机器学习机器学习深度学习
目录自己疑问-----容易错误的点:训练集、验证集、测试集训练集验证集测试集以下视频地址:[中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibili第二章2.1线性回归2-2代价函数(类似误差一样)2.5-2.6梯度下降算法,梯度下降算法理解2.3线性回归的梯度下降/Batch梯度下降第四章(正规方程与梯度下降一样是为了求满足条件的(塞塔o))4.1多变量线性回归假设函数4.2多元(多变量)梯
- 机器学习 笔记(继续更新)
M有在认真学习
机器学习python
学习内容跟随“吴恩达机器学习系列课程”。目录1.具有一个特征的学习算法(linearregression线性回归),代价函数编辑的由来,等高图2.可以最小化代价函数的梯度下降法(gradientdescent),以及对于编辑、学习率编辑、导数项的通俗解释3.具有多个变量或特征的学习算法(multivariatelinearregression多元线性回归),它的假设函数和的迭代4.将gradien
- 吴恩达---机器学习的流程(持续更新)
M有在认真学习
机器学习回归逻辑回归
参考:吴恩达机器学习的视频视频链接:[中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibili本文用于我自己的内容总结以及层次理解。学习流程:1.具有一个特征的学习算法(linearregression线性回归),代价函数编辑的由来,等高图2.可以最小化代价函数的梯度下降法(gradientdescent),以及对于编辑、学习率编辑、导数项的通俗解释3.具有多个变量或特征的学习算法(multi
- 机器学习算法笔记(1)——逻辑斯蒂回归Logistic处理二分类任务
念旧NiceJeo
机器学习算法笔记算法机器学习python可视化
逻辑斯蒂回归LogisticRegressor处理二分类任务一.逻辑斯蒂回归1.模型2.代价函数(损失函数)3.优化算法二.代码实现1.二维二分类2.多维二分类本系列为观看吴恩达老师的[中英字幕]吴恩达机器学习系列课程做的课堂笔记。图片来自视频截图。不得不说,看了老师的视频真的学到了很多。即使数学不好的同志们也可以看懂,真的可谓是细致入微了。一.逻辑斯蒂回归1.模型学过深度学习的同志们对这张图一定
- 【机器学习(九)】大数据集及其梯度下降算法
趴抖
机器学习算法人工智能
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P102-P105。大数据集假定你的训练集的大小m为100000000。如果你想训练一个线性回归模型或是一个逻辑回归模型。其梯度下降规则如下:当m的值为100000000时,就需要对一亿项进行求和。这是为了计算导数项以及演算单步下降。因为计算超过一亿项的代价太高了。我们容易思考:为什么不能在这一亿项中取一千个样本的子集,然后仅用
- 【机器学习(八)】神经网络进阶
趴抖
机器学习神经网络逻辑回归
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P50-P56。代价函数假设我们有一个与下图类似的神经网络结构,再假设我们有一个像这样的训练集,其中有m组训练样本(x(i),y(I))。用L来表示神经网络结构的总层数:我们将会考虑两种分类问题:二元分类问题这里的y只能为0或1,在这种情况下,我们会有一个输出单元即K=1。同时神经网络的输出结果h(x)会是一个实数多类别分类问题
- 【机器学习(四)】分类问题与logistic回归模型
趴抖
机器学习回归分类
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P32-P36、P38。情景引入在前面几篇文章中,我们提到了判断邮件是否为垃圾邮件的例子,以及良性与恶性肿瘤的例子。在所有的这些问题中,我们尝试预测的变量y,都是可以有两个取值的变量——0或1。我们用0来表示的这一类还可以叫做”负类“,用1来表示的这一类还可以叫做正类。现在我们要从只包含0和1两类的分类问题开始。假设陈述——lo
- 【机器学习(六)】过拟合问题及正则化
趴抖
机器学习人工智能逻辑回归
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P39-P42。过拟合问题下面是一个用线性回归来预测房价的例子:第一种拟合没有很好地拟合训练集,称其为欠拟合。或者说,这个算法具有高偏差。第二种恰当地拟合了训练集。第三种拟合似乎很好地拟合了训练集,代价函数实际上可能非常接近于0,毕竟它通过了所有的数据点,但这是一条扭曲的,不停上下波动的曲线。事实上我们并不认为它是一个预测房价的
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla