本文为《机器学习实战:基于Scikit-Learn和TensorFlow》的读书笔记。
中文翻译参考
利用加州普查数据,建立一个加州房价模型。
数据包含每个街区组的人口、收入中位数、房价中位数等指标。
利用这个数据进行学习,然后根据其它指标,预测任何街区的的房价中位数。
均方根误差(RMSE):
RMSE ( X , h ) = 1 m ∑ i = 1 m ( h ( x ( i ) ) − y ( i ) ) 2 \operatorname{RMSE}(\mathbf{X}, h)=\sqrt{\frac{1}{m} \sum\limits_{i=1}^{m}\left(h\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right)^{2}} RMSE(X,h)=m1i=1∑m(h(x(i))−y(i))2
平均绝对误差(MAE)
MAE ( X , h ) = 1 m ∑ i = 1 m ∣ h ( x ( i ) ) − y ( i ) ∣ \operatorname{MAE}(\mathbf{X}, h)=\frac{1}{m} \sum\limits_{i=1}^{m}\left|h\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right| MAE(X,h)=m1i=1∑m∣∣∣h(x(i))−y(i)∣∣∣
范数的指数越高,就越关注大的值而忽略小的值。这就是为什么 RMSE 比 MAE 对异常值更敏感。但是当异常值是指数分布的(类似正态曲线),RMSE 就会表现很好。
是分类?(房子便宜、中等、昂贵)
是回归?(预测房子价格),本任务是回归。
import pandas as pd
data = pd.read_csv("housing.csv")
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude 20640 non-null float64
latitude 20640 non-null float64
housing_median_age 20640 non-null float64
total_rooms 20640 non-null float64
total_bedrooms 20433 non-null float64
population 20640 non-null float64
households 20640 non-null float64
median_income 20640 non-null float64
median_house_value 20640 non-null float64
ocean_proximity 20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
total_bedrooms 20433 non-null float64
有缺失数据
data['ocean_proximity'].value_counts()
查看 ocean_proximity 特征 有多少种值
<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5
Name: ocean_proximity, dtype: int64
data.describe()
数字特征统计
data.head()
数据前5行
%matplotlib inline
import matplotlib.pyplot as plt
data.hist(bins=50,figsize=(20,15))
直方图
数据有不同的量纲,一些数据左右分布不均匀。一般将其变为正态分布,一些模型会工作的比较好。
from sklearn.model_selection import train_test_split
train_set, test_set = train_test_split(data, test_size=0.2, random_state=1)
train_set.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16512 entries, 15961 to 235
Data columns (total 10 columns):
longitude 16512 non-null float64
latitude 16512 non-null float64
housing_median_age 16512 non-null float64
total_rooms 16512 non-null float64
total_bedrooms 16349 non-null float64
population 16512 non-null float64
households 16512 non-null float64
median_income 16512 non-null float64
median_house_value 16512 non-null float64
ocean_proximity 16512 non-null object
dtypes: float64(9), object(1)
memory usage: 1.4+ MB
这种随机的切分方法,在数据量小的时候可能会出现,分出来的数据某些特征比例不再是原有的比例
,后序预测可能造成误差
import numpy as np
data['income_cat'] = np.ceil(data['median_income']/1.5)
data['income_cat']
data['income_cat'].where(data['income_cat'] < 5, 5.0, inplace=True)
# pd.where() Where cond is True, keep the original value.
# Where False, replace with corresponding value from other
大于等于 5 的, 替换成 5, 把收入分成几类
data['income_cat'].hist()
data['income_cat'].value_counts()/len(data)
3.0 0.350581
2.0 0.318847
4.0 0.176308
5.0 0.114438
1.0 0.039826
Name: income_cat, dtype: float64
Scikit-Learn
的StratifiedShuffleSplit
类,分层采样from sklearn.model_selection import StratifiedShuffleSplit
# help(StratifiedShuffleSplit)
splt = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=1)
for train_idx, test_idx in splt.split(data, data['income_cat']):
# 按照后者分层抽样
strat_train_set = data.loc[train_idx]
strat_test_set = data.loc[test_idx]
# 查看分布
strat_train_set['income_cat'].value_counts()/len(strat_train_set)
strat_test_set['income_cat'].value_counts()/len(strat_test_set)
查看抽样结果,跟上面原始数据的分布很接近
3.0 0.350533
2.0 0.318798
4.0 0.176357
5.0 0.114583
1.0 0.039729
Name: income_cat, dtype: float64
分层采样的收入分类比例与总数据集几乎相同,而随机采样数据集偏差严重
删除新增列,回到初始数据状态
for set in (strat_train_set, strat_test_set):
set.drop('income_cat',axis=1, inplace=True)
strat_train_set
housing = strat_train_set.copy() # 复制避免损坏
housing.plot(kind='scatter',x='longitude',y='latitude')
# 调整alpha,可以看出密度差异
housing.plot(kind='scatter',x='longitude',y='latitude',alpha=0.1)
housing.plot(kind='scatter',x='longitude',y='latitude',alpha=0.4,
s=housing['population']/100, label='population',
c='median_house_value',cmap=plt.get_cmap('jet'))
每个圈的半径表示街区的人口(选项s),颜色代表价格(选项c)
可以看出,距离海岸近的房价较高,但是北边海岸边的价格又不是很高
相关系数
corr_mat = housing.corr()
corr_mat
corr_mat['median_house_value'].sort_values(ascending=False)
median_house_value 1.000000
median_income 0.684828
total_rooms 0.133566
housing_median_age 0.107684
households 0.065778
total_bedrooms 0.049941
population -0.025008
longitude -0.043824 # 经度,东西
latitude -0.146748 # 纬度,南北
Name: median_house_value, dtype: float64
可以看到纬度越大(北边),房价(越低),呈负相关
attributes = ["median_house_value", "median_income", "total_rooms", "housing_median_age"]
pd.plotting.scatter_matrix(housing[attributes],figsize=(12,8))
挑几个可能跟房价先关的特征出来,画出相关性图
可以看出收入的中位数
特征,最有可能用来预测房价,将该子图放大
housing.plot(kind='scatter',x='median_income',y='median_house_value',alpha=0.1)
数据在交给算法之前,最后一件事是尝试多种属性组合
例如,如果你不知道某个街区有多少户,该街区的总房间数就没什么用。你真正需要的是每户有几个房间。
相似的,总卧室数也不重要:你可能需要将其与房间数进行比较。每户的人口数也是一个有趣的属性组合。
# 每家的房间数
housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
# 每家的卧室数量比
housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
# 每家的人口
housing["population_per_household"]=housing["population"]/housing["households"]
corr_mat = housing.corr()
corr_mat['median_house_value'].sort_values(ascending=False)
median_house_value 1.000000
median_income 0.684828
rooms_per_household 0.171947 # 新特征1
total_rooms 0.133566 # 1a 3b
housing_median_age 0.107684
households 0.065778 # 1b 2b
total_bedrooms 0.049941 # 3a
population -0.025008 # 2a
population_per_household -0.026596 # 新特征2
longitude -0.043824
latitude -0.146748
bedrooms_per_room -0.256396 # 新特征3
Name: median_house_value, dtype: float64
可以看出新的特征比原特征,与房价之间有更高的相关性
尽量写一些函数来处理,以便复用,代码也更清晰
分离 特征 与 标签
housing = strat_train_set.drop('median_house_value',axis=1)
housing_label = strat_train_set['median_house_value'].copy()
total_bedrooms
有缺失,可以:
housing.dropna(subset=["total_bedrooms"]) # 选项1
housing.drop("total_bedrooms", axis=1) # 选项2
median = housing["total_bedrooms"].median() 记得保存,后序填补test集
housing["total_bedrooms"].fillna(median) # 选项3
from sklearn.impute import SimpleImputer
impter = SimpleImputer(strategy='median')
# 数值属性才能计算中位数
housing_num = housing.drop('ocean_proximity',axis=1)
impter.fit(housing_num)
impter.statistics_
array([-118.49 , 34.26 , 29. , 2122.5 , 434. ,
1163. , 409. , 3.52945])
housing_num.median().values
跟上面一样
array([-118.49 , 34.26 , 29. , 2122.5 , 434. ,
1163. , 409. , 3.52945])
应用转换,填补确实数据为中位数
X = impter.transform(housing_num)
type(X) # numpy.ndarray
转换完为 numpy 数组,再转回 DataFrame
housing_tr = pd.DataFrame(X, columns=housing_num.columns)
type(housing_tr) # pandas.core.frame.DataFrame
LabelEncoder
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder() # 只能对第一文本列,多文本列使用pd.factorize()
housing_cat = housing['ocean_proximity']
housing_cat_encoded = encoder.fit_transform(housing_cat)
housing_cat_encoded
print(encoder.classes_)
['<1H OCEAN' 'INLAND' 'ISLAND' 'NEAR BAY' 'NEAR OCEAN']
这样做,标签对应于 0,1,2,算法在计算距离相似度的时候,会产生偏差:(0,4显然比0,1更相似)
采用 独热编码(One-Hot Encoding),只有一个属性会等于 1(热),其余会是 0(冷),计算距离相似度的时候更合理
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder()
housing_cat_1hot = encoder.fit_transform(housing_cat_encoded.reshape(-1,1))
注意:需要单列数据需要 reshape(-1,1),转成矩阵
housing_cat_1hot
<16512x5 sparse matrix of type 'numpy.float64'>'
with 16512 stored elements in Compressed Sparse Row format>
输出结果是一个 SciPy 稀疏矩阵
,而不是 NumPy 数组
。
housing_cat_1hot.toarray()
array([[0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0.],
[1., 0., 0., 0., 0.],
...,
[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0.]])
LabelBinarizer
,一步执行这两个转换(从文本分类到整数分类,再从整数分类到独热向量)from sklearn.preprocessing import LabelBinarizer
encoder = LabelBinarizer()
向构造器LabelBinarizer传递 sparse_output=True,就可以得到一个稀疏矩阵
housing_cat_1hot = encoder.fit_transform(housing_cat)
housing_cat_1hot
array([[0, 0, 0, 1, 0],
[0, 1, 0, 0, 0],
[1, 0, 0, 0, 0],
...,
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 1, 0, 0, 0]])
创建一个类并执行三个方法:fit()(返回self)
,transform()
,和fit_transform()
TransformerMixin
作为基类,可以很容易地得到最后一个。BaseEstimator
作为基类(且构造器中避免使用*args
和**kargs
),你就能得到两个额外的方法(get_params() 和set_params()),二者可以方便地进行超参数自动微调from sklearn.base import BaseEstimator, TransformerMixin
rooms_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
def __init__(self, add_bedrooms_per_room = True): # no *args or **kargs
self.add_bedrooms_per_room = add_bedrooms_per_room
def fit(self, X, y=None):
return self # nothing else to do
def transform(self, X, y=None):
rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
population_per_household = X[:, population_ix] / X[:, household_ix]
if self.add_bedrooms_per_room:
bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
return np.c_[X, rooms_per_household, population_per_household,
bedrooms_per_room]
else:
return np.c_[X, rooms_per_household, population_per_household]
attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform(housing.values)
housing_extra_attribs
array([[-122.13, 37.67, 40.0, ..., 'NEAR BAY', 5.514195583596215,
2.8832807570977916],
[-120.98, 37.65, 40.0, ..., 'INLAND', 6.698412698412699,
2.507936507936508],
[-118.37, 33.87, 23.0, ..., '<1H OCEAN', 5.137640449438202,
2.502808988764045],
...,
[-117.69, 33.58, 5.0, ..., '<1H OCEAN', 6.80040733197556,
2.9297352342158858],
[-117.3, 34.1, 49.0, ..., 'INLAND', 4.615384615384615,
5.846153846153846],
[-121.77, 37.99, 4.0, ..., 'INLAND', 7.853351955307263,
3.392458100558659]], dtype=object)
不同的特征量纲不一样,在基于距离的机器学习算法中,特征的权重不一样,会造成误差
线性函数归一化(归一化(normalization))很简单:通过减去最小值,然后再除以最大值与最小值的差值,来进行归一化。
MinMaxScaler
来实现这个功能。它有一个超参数feature_range
,可以让你改变范围,如果不希望范围是 0 到 1。标准化:先减去平均值(所以标准化值的平均值总是 0),然后除以方差,使得到的分布具有单位方差。
标准化受到异常值的影响很小
。例如,假设一个街区的收入中位数由于某种错误变成了100,归一化会将其它范围是 0 到 15 的值变为 0-0.15,但是标准化不会受什么影响。StandardScaler
来进行标准化。警告:与所有的转换一样,缩放器只能向训练集拟合,而不是向完整的数据集(包括测试集)。只有这样,你才能用缩放器转换训练集和测试集(和新数据)。
存在许多数据转换步骤,需要按一定的顺序执行。Scikit-Learn 提供了类Pipeline
,来进行这一系列的转换。
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
num_pipeline = Pipeline([
('imputer',SimpleImputer(strategy='median')),
('attibs_adder',CombinedAttributesAdder()),
('std_scaler',StandardScaler()),
])
housing_num_tr = num_pipeline.fit_transform(housing_num)
housing_num_tr
array([[-1.27826235, 0.95445204, 0.89646428, ..., 0.04435599,
-0.01693693, -0.49175254],
[-0.70432019, 0.94509343, 0.89646428, ..., 0.56563549,
-0.05135459, -0.99646009],
[ 0.59827896, -0.82368426, -0.45394013, ..., -0.12139949,
-0.05182477, -0.5064297 ],
...,
[ 0.93765346, -0.95938413, -1.88378009, ..., 0.61053242,
-0.01267723, -0.96392659],
[ 1.13229471, -0.71606022, 1.61138426, ..., -0.35129083,
0.25474742, -0.46992773],
[-1.0985935 , 1.10418984, -1.96321564, ..., 1.0740272 ,
0.02975272, -1.15998515]])
Pipeline 构造器需要一个定义步骤顺序的名字/估计器对
的列表
除了最后一个估计器,其余都要是转换器(它们都要有fit_transform()
方法)。名字随意起
调用流水线的fit()
方法,会对所有转换器顺序调用fit_transform()
方法,将每次调用的输出作为参数传递给下一个调用
一直到最后一个估计器,它只执行fit()
方法
流水线暴露相同的方法作为最终的估计器。在这个例子中,最后的估计器是一个StandardScaler
,它是一个转换器,因此这个流水线有一个transform()
方法,可以顺序对数据做所有转换(它还有一个fit_transform
方法可以使用,就不必先调用fit()
再进行transform()
)
如果不需要手动将PandasDataFrame中的数值列转成Numpy数组的格式,而可以直接将DataFrame输入pipeline中进行处理就好了。
Scikit-Learn 没有工具来处理 PandasDataFrame,因此我们需要写一个简单的自定义转换器来做这项工作:
from sklearn.base import BaseEstimator, TransformerMixin
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self,attribute_names):
self.attribute_names = attribute_names
def fit(self,X,y=None):
return self
def transform(self,X):
return X[self.attribute_names].values
# 报错参考 https://blog.csdn.net/jasonzhoujx/article/details/82025571
class MyLabelBinarizer(TransformerMixin):
def __init__(self, *args, **kwargs):
self.encoder = LabelBinarizer(*args, **kwargs)
def fit(self, x, y=0):
self.encoder.fit(x)
return self
def transform(self, x, y=0):
return self.encoder.transform(x)
from sklearn.pipeline import FeatureUnion
num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]
num_pipeline = Pipeline([
('selector',DataFrameSelector(num_attribs)),
('Simpleimputer', SimpleImputer(strategy="median")),
('attribs_adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler()),
])
cat_pipeline = Pipeline([
('selector',DataFrameSelector(cat_attribs)),
('label_binarizer',MyLabelBinarizer())
])
full_pipeline = FeatureUnion(transformer_list=[
('num_pipeline',num_pipeline),
('cat_pipeline',cat_pipeline),
])
# help(FeatureUnion)
housing_prepared = full_pipeline.fit_transform(housing)
housing_prepared
array([[-1.27826235, 0.95445204, 0.89646428, ..., 0. ,
1. , 0. ],
[-0.70432019, 0.94509343, 0.89646428, ..., 0. ,
0. , 0. ],
[ 0.59827896, -0.82368426, -0.45394013, ..., 0. ,
0. , 0. ],
...,
[ 0.93765346, -0.95938413, -1.88378009, ..., 0. ,
0. , 0. ],
[ 1.13229471, -0.71606022, 1.61138426, ..., 0. ,
0. , 0. ],
[-1.0985935 , 1.10418984, -1.96321564, ..., 0. ,
0. , 0. ]])
初步选择 线性回归模型
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_label)
somedata = housing.iloc[:5]
somelabel = housing_label.iloc[:5]
somedata_prepared = full_pipeline.transform(somedata)
print('predict:\t', lin_reg.predict(somedata_prepared))
print('Labels:\t',list(somelabel))
predict: [234956.84260842 303073.513104 327746.46204573 355932.30741583
210220.50294171]
Labels: [184000.0, 172200.0, 359900.0, 258200.0, 239100.0]
from sklearn.metrics import mean_squared_error
housing_predict = lin_reg.predict(housing_prepared)
lin_mse = mean_squared_error(housing_predict, housing_label)
lin_rmse = np.sqrt(lin_mse)
lin_rmse
68860.85279166883
误差很大,效果不是很理想
模型欠拟合
:
修复欠拟合的主要方法:
先让我们尝试一个更为复杂的模型,看看效果。
来训练一个DecisionTreeRegressor
。这是一个强大的模型,可以发现数据中复杂的非线性关系
from sklearn.tree import DecisionTreeRegressor
tree_reg = DecisionTreeRegressor()
tree_reg.fit(housing_prepared, housing_label)
housing_predictions = tree_reg.predict(housing_prepared)
tree_mse = mean_squared_error(housing_label, housing_predictions)
tree_rmse = np.sqrt(tree_mse)
tree_rmse
误差 0.0,太强了? 错了,上面使用了全部的训练集训练,然后在训练集上预测,产生了过拟合
K 折交叉验证(K-fold cross-validation):
from sklearn.model_selection import cross_val_score
scores = cross_val_score(tree_reg,housing_prepared,housing_label,
scoring='neg_mean_squared_error', cv=10)
tree_rmse_scores = np.sqrt(-scores) # sklearn用的是负数
print(tree_rmse_scores)
print(tree_rmse_scores.mean())
print(tree_rmse_scores.std())
[71214.4929498 71929.79930468 70914.76077221 69550.72566912
71042.25558966 67279.14165025 73061.35854347 71568.85256242
71380.99149371 69504.81637098]
70744.71949063087
1522.0580698181013
再用 线性回归 模型,试下交叉验证的结果
lin_scores = cross_val_score(lin_reg, housing_prepared, housing_label,
scoring='neg_mean_squared_error', cv=10)
lin_rmse_scores = np.sqrt(-lin_scores)
print(lin_rmse_scores)
print(lin_rmse_scores.mean())
print(lin_rmse_scores.std())
[70987.24786319 66375.29508519 73837.53789445 69493.59584642
69821.05544742 69047.06162451 65908.72602507 66979.33032669
73036.00622233 67077.50225384]
69256.33585891136
2610.121268165482
再试下 随机森林 模型
from sklearn.ensemble import RandomForestRegressor
forest_reg = RandomForestRegressor()
forest_scores = cross_val_score(forest_reg,housing_prepared,housing_label,
scoring='neg_mean_squared_error',cv=10)
forest_rmse_scores = np.sqrt(-forest_scores)
print(forest_rmse_scores)
print(forest_rmse_scores.mean())
print(forest_rmse_scores.std())
[51968.86058788 47122.75805482 48941.3492676 50877.99429489
51200.95320051 49198.87467112 49401.27484477 48418.53618115
53788.16232918 49438.88539583]
50035.76488277516
1834.1856707471993
随机森林模型,比上面2个模型得到的结果的误差要小。看起来是个不错的选择。
在深入随机森林之前,应该尝试下机器学习算法的其它类型模型(不同核的支持向量机,神经网络,等等),不要在调节超参数上花费太多时间。目标是列出一个可能模型的列表(两到五个)。
提示:要保存每个试验过的模型,以便后续可以再用。
要确保有超参数和训练参数,以及交叉验证评分,和实际的预测值。
这可以让你比较不同类型模型的评分,还可以比较误差种类。
你可以用 Python 的模块 pickle,非常方便地保存 Scikit-Learn 模型,或使用 sklearn.externals.joblib,后者序列化大 NumPy 数组更有效率
from sklearn.externals import joblib
joblib.dump(forest_reg, "my_forest.pkl")
my_forest_model = joblib.load("my_forest.pkl")
假设有几个有希望的模型。现在需要对它们进行微调
你应该使用 Scikit-Learn 的 GridSearchCV 来做这项搜索工作
哪些超参数
什么值
所有可能超参数值的组合
from sklearn.model_selection import GridSearchCV
param_grid = [
{'n_estimators' : [3,10,30],'max_features':[2,4,6,8]},
{'bootstrap':[False], 'n_estimators' : [3,10],'max_features':[2,3,4]},
]
forest_reg = RandomForestRegressor()
grid_search = GridSearchCV(forest_reg, param_grid, cv=5,
scoring='neg_mean_squared_error')
grid_search.fit(housing_prepared, housing_label)
#----------------------------------
GridSearchCV(cv=5, error_score=nan,
estimator=RandomForestRegressor(bootstrap=True, ccp_alpha=0.0,
criterion='mse', max_depth=None,
max_features='auto',
max_leaf_nodes=None,
max_samples=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_estimators=100, n_jobs=None,
oob_score=False, random_state=None,
verbose=0, warm_start=False),
iid='deprecated', n_jobs=None,
param_grid=[{'max_features': [2, 4, 6, 8],
'n_estimators': [3, 10, 30]},
{'bootstrap': [False], 'max_features': [2, 3, 4],
'n_estimators': [3, 10]}],
pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
scoring='neg_mean_squared_error', verbose=0)
param_grid
告诉 Scikit-Learn 首先评估第一个dict
中的 n_estimators 和max_features 的3 × 4 = 12种组合dict
中超参数的2 × 3 = 6种组合,这次会将超参数bootstrap设为False而不是True完成后,你就能获得参数的最佳组合
grid_search.best_params_
{'max_features': 8, 'n_estimators': 30}
注意到参数在边界上,可能还要继续扩大范围搜索
最佳的模型
grid_search.best_estimator_
#---------output-------------
RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',
max_depth=None, max_features=8, max_leaf_nodes=None,
max_samples=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=30, n_jobs=None, oob_score=False,
random_state=None, verbose=0, warm_start=False)
cv_result = grid_search.cv_results_
for mean_score, params in zip(cv_result['mean_test_score'], cv_result['params']):
print(np.sqrt(-mean_score), params)
grid_search.cv_results_
包含的内容:
cv_result = grid_search.cv_results_
for mean_score, params in zip(cv_result['mean_test_score'], cv_result['params']):
print(np.sqrt(-mean_score), params)
18 种模型参数下的模型表现
65764.17270897377 {'max_features': 2, 'n_estimators': 3}
55028.13746266011 {'max_features': 2, 'n_estimators': 10}
53074.92097234033 {'max_features': 2, 'n_estimators': 30}
59883.77893095 {'max_features': 4, 'n_estimators': 3}
53191.69949879354 {'max_features': 4, 'n_estimators': 10}
50181.08262957352 {'max_features': 4, 'n_estimators': 30}
58994.29777449576 {'max_features': 6, 'n_estimators': 3}
52167.31741521162 {'max_features': 6, 'n_estimators': 10}
50241.45200619339 {'max_features': 6, 'n_estimators': 30}
58312.46978517355 {'max_features': 8, 'n_estimators': 3}
52411.65674754867 {'max_features': 8, 'n_estimators': 10}
49864.0026039013 {'max_features': 8, 'n_estimators': 30}
62905.486606479426 {'bootstrap': False, 'max_features': 2, 'n_estimators': 3}
54197.59949544192 {'bootstrap': False, 'max_features': 2, 'n_estimators': 10}
60303.313894870866 {'bootstrap': False, 'max_features': 3, 'n_estimators': 3}
52881.46279898861 {'bootstrap': False, 'max_features': 3, 'n_estimators': 10}
58317.06280296479 {'bootstrap': False, 'max_features': 4, 'n_estimators': 3}
51572.96293902154 {'bootstrap': False, 'max_features': 4, 'n_estimators': 10}
提示:可以像超参数一样处理数据准备的步骤。
例如,网格搜索可以自动判断 是否添加一个你不确定的特征(比如,使用转换器CombinedAttributesAdder 的超参数 add_bedrooms_per_room)。
它还能用相似的方法来自动找到处理异常值、缺失特征、特征选择等任务的最佳方法。
当探索相对较少的组合时,就像前面的例子,网格搜索还可以。
但是当超参数的搜索空间很大时,最好使用 RandomizedSearchCV。
其搜索策略如下:
(a)对于搜索范围是distribution的超参数,根据给定的distribution随机采样;
(b)对于搜索范围是list的超参数,在给定的list中等概率采样;
(c)对a、b两步中得到的n_iter组采样结果,进行遍历。
(补充)如果给定的搜索范围均为list,则不放回抽样n_iter次。
原文链接:https://blog.csdn.net/qq_36810398/java/article/details/86699842
两者的区别参考以下博文:
https://blog.csdn.net/qq_36810398/article/details/86699842
https://blog.csdn.net/juezhanangle/article/details/80051256
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint
param_distribs = {
'n_estimators':randint(low=1, high=200),
'max_features':randint(low=1, high=8),
}
forest_reg = RandomForestRegressor(random_state=1)
rand_search = RandomizedSearchCV(forest_reg, param_distributions=param_distribs,
n_iter=10, cv=5, scoring='neg_mean_squared_error',random_state=1)
rand_search.fit(housing_prepared, housing_label)
RandomizedSearchCV(cv=5, error_score=nan,
estimator=RandomForestRegressor(bootstrap=True,
ccp_alpha=0.0,
criterion='mse',
max_depth=None,
max_features='auto',
max_leaf_nodes=None,
max_samples=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_estimators=100,
n_jobs=None, oob_score=Fals...
iid='deprecated', n_iter=10, n_jobs=None,
param_distributions={'max_features': <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000017B8CEFFF98>,
'n_estimators': <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000017B8C711BE0>},
pre_dispatch='2*n_jobs', random_state=1, refit=True,
return_train_score=False, scoring='neg_mean_squared_error',
verbose=0)
search_result = rand_search.cv_results_
for mean_score, params in zip(search_result['mean_test_score'], search_result['params']):
print(np.sqrt(-mean_score),params)
feature_importance = rand_search.best_estimator_.feature_importances_
sorted(zip(feature_importance, attributes), reverse=True)
[(0.3266343000845554, 'median_income'),
(0.14655427173815663, 'INLAND'),
(0.10393984611581725, 'pop_per_hhold'),
(0.07978993056196858, 'bedrooms_per_room'),
(0.07850738357218873, 'longitude'),
(0.06969306682249354, 'latitude'),
(0.05962901176048446, 'rooms_per_hhold'),
(0.04273624791392784, 'housing_median_age'),
(0.018322580791300728, 'total_rooms'),
(0.017916659917498783, 'population'),
(0.017041691466405204, 'total_bedrooms'),
(0.015954810875574967, 'households'),
(0.013358851743037617, '<1H OCEAN'),
(0.0059438389065000225, 'NEAR OCEAN'),
(0.003697096190985686, 'NEAR BAY'),
(0.0002804115391046209, 'ISLAND')]
另一种微调系统的方法是将表现最好的模型组合起来
。
组合(集成)之后的性能通常要比单独的模型要好(就像随机森林要比单独的决策树要好),特别是当单独模型的误差类型不同时。
通过分析最佳模型,常常可以获得对问题更深的了解。
比如,RandomForestRegressor 可以指出每个属性对于做出准确预测的相对重要性:
feature_importances = grid_search.best_estimator_.feature_importances_
feature_importances
array([6.92844433e-02, 6.58717797e-02, 4.39855401e-02, 1.58155272e-02,
1.54980143e-02, 1.58108677e-02, 1.41614038e-02, 3.52323623e-01,
4.41751467e-02, 1.10901558e-01, 8.01958553e-02, 3.59928828e-03,
1.63144911e-01, 2.10262727e-04, 1.92134774e-03, 3.10043063e-03])
把特征名字也打印出来
extra_attribs = ["rooms_per_hhold", "pop_per_hhold", "bedrooms_per_room"]
cat_one_hot_attribs = list(encoder.classes_)
cat_one_hot_attribs
# ['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN']
attributes = num_attribs + extra_attribs + cat_one_hot_attribs
attributes
['longitude',
'latitude',
'housing_median_age',
'total_rooms',
'total_bedrooms',
'population',
'households',
'median_income',
'rooms_per_hhold',
'pop_per_hhold',
'bedrooms_per_room',
'<1H OCEAN',
'INLAND',
'ISLAND',
'NEAR BAY',
'NEAR OCEAN']
sorted(zip(feature_importances,attributes), reverse=True)
[(0.3523236234176724, 'median_income'),
(0.16314491099438777, 'INLAND'),
(0.11090155811701467, 'pop_per_hhold'),
(0.08019585526690289, 'bedrooms_per_room'),
(0.06928444332660065, 'longitude'),
(0.06587177968295425, 'latitude'),
(0.04417514666849209, 'rooms_per_hhold'),
(0.04398554014357369, 'housing_median_age'),
(0.015815527234205994, 'total_rooms'),
(0.015810867735057542, 'population'),
(0.015498014277829743, 'total_bedrooms'),
(0.014161403758405241, 'households'),
(0.0035992882775714432, '<1H OCEAN'),
(0.0031004306281128724, 'NEAR OCEAN'),
(0.0019213477443202828, 'NEAR BAY'),
(0.00021026272689858585, 'ISLAND')]
有了这个信息,你就可以丢弃一些不那么重要的特征(比如,显然只要一个ocean_proximity 的类型(INLAND
)就够了,所以可以丢弃掉其它的)。
还应该看一下系统的特定误差,搞清为什么会有误差,如何改正问题(添加更多的特征,去掉没有什么信息的特征,清洗异常值等等)。
final_model = grid_search.best_estimator_
X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()
X_test_prepared = full_pipeline.transform(X_test)
final_predict = final_model.predict(X_test_prepared)
final_mse = mean_squared_error(y_test, final_predict)
final_rmse = np.sqrt(final_mse)
final_rmse # 47818.484839863646
编写监控代码,以固定间隔检测系统的实时表现,当发生下降时触发报警。
评估系统的表现需要对预测值采样并进行评估。
你还要评估系统输入数据的质量。
你可能想定期用新数据训练模型。你应该尽可能自动化这个过程。
如果你的系统是一个线上学习系统,你需要定期保存系统状态快照,好能方便地回滚到之前的工作状态。
# 选择最好的k个特征
from sklearn.base import BaseEstimator, TransformerMixin
def indices_of_topK_feature(arr, k):
return np.sort(np.argpartition(np.array(arr), -k)[-k:])
class TopFeatureSelector(BaseEstimator,TransformerMixin):
def __init__(self, feature_importance, k):
self.feature_importance = feature_importance
self.k = k
def fit(self, X, y=None):
self.feature_indices_ = indices_of_topK_feature(self.feature_importance, self.k)
return self
def transform(self,X):
return X[:, self.feature_indices_]
k=5
topK_features = indices_of_topK_feature(feature_importance,k)
topK_features # array([ 0, 7, 9, 10, 12], dtype=int64)
np.array(attributes)[topK_features]
# array(['longitude', 'median_income', 'pop_per_hhold', 'bedrooms_per_room',
'INLAND'], dtype=')
sorted(zip(feature_importance, attributes), reverse=True)[:k]
# [(0.3266343000845554, 'median_income'),
(0.14655427173815663, 'INLAND'),
(0.10393984611581725, 'pop_per_hhold'),
(0.07978993056196858, 'bedrooms_per_room'),
(0.07850738357218873, 'longitude')]
preparation_and_feature_selection_pipeline = Pipeline([
('preparation', full_pipeline),
('feature_selection', TopFeatureSelector(feature_importance, k))
])
housing_prepared_top_k_features = preparation_and_feature_selection_pipeline.fit_transform(housing)
prepare_select_and_predict_pipeline = Pipeline([
('preparation', full_pipeline),
('feature_selection', TopFeatureSelector(feature_importance, k)),
('forst_reg', RandomForestRegressor())
])
prepare_select_and_predict_pipeline.fit(housing, housing_label)
some_data = housing.iloc[:4]
some_label = housing_label.iloc[:4]
print("Predictions:\t", prepare_select_and_predict_pipeline.predict(some_data))
print("Labels:\t\t", list(some_label))
Predictions: [183259. 209045.04 375686.02 296260.05]
Labels: [184000.0, 172200.0, 359900.0, 258200.0]
param_grid = [{
'preparation__num__imputer__strategy': ['mean', 'median', 'most_frequent'],
'feature_selection__k': list(range(1, len(feature_importance) + 1))
}]
grid_search_prep = GridSearchCV(prepare_select_and_predict_pipeline, param_grid, cv=5,
scoring='neg_mean_squared_error', verbose=2, n_jobs=4)
grid_search_prep.fit(housing, housing_label)
grid_search_prep.best_params_
》》》{'feature_selection__k': 15,
'preparation__num__imputer__strategy': 'most_frequent'}