java.lang.OutOfMemoryError: Unable to acquire 65536 bytes of memory, got 0

java.lang.OutOfMemoryError: Unable to acquire 65536 bytes of memory, got 0
	at org.apache.spark.memory.MemoryConsumer.allocateArray(MemoryConsumer.java:98)
	at org.apache.spark.util.collection.unsafe.sort.UnsafeInMemorySorter.(UnsafeInMemorySorter.java:126)
	at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.(UnsafeExternalSorter.java:153)
	at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.create(UnsafeExternalSorter.java:120)
	at org.apache.spark.sql.execution.UnsafeExternalRowSorter.(UnsafeExternalRowSorter.java:82)
	at org.apache.spark.sql.execution.SortExec.createSorter(SortExec.scala:87)
	at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.init(Unknown Source)
	at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8.apply(WholeStageCodegenExec.scala:392)
	at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8.apply(WholeStageCodegenExec.scala:389)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$26.apply(RDD.scala:844)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$26.apply(RDD.scala:844)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:100)
	at org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:99)
	at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
	at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
	at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:315)
	at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:258)
	at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:256)
	at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1375)
	at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:261)
	at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:191)
	at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:190)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
	at org.apache.spark.scheduler.Task.run(Task.scala:108)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
	at java.lang.Thread.run(Thread.java:745)

**

解决方案

**

将代码中的 coalesce 改为 reparation即可。

reparation和coalesce的用法和区别:

先看一下下面的代码吧:

package test
 
import org.apache.spark.{SparkConf, SparkContext}
 
object RddTest {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("localTest").setMaster("local[2]")
    val sc = new SparkContext(conf)
    val rdd1 = sc.parallelize(List("hello","jason","jim","vin"),5)
    println(rdd1.partitions.length)  //输出5
    val rdd3 = rdd1.repartition(10)
    println(rdd3.partitions.length)  //输出10
    val rdd4 = rdd1.coalesce(10,true) 
    println(rdd4.partitions.length)  //输出10
  }
}

从上面的demo中可以看到coalesce和repartition都是用来对RDD的分区重新划分的,下面我们来看一下这两个方法的源码.如下:
java.lang.OutOfMemoryError: Unable to acquire 65536 bytes of memory, got 0_第1张图片
在这里插入图片描述
从源码中可以看出repartition方法其实就是调用了coalesce方法,shuffle为true的情况(默认shuffle是fasle).现在假设RDD有X个分区,需要重新划分成Y个分区.

1.如果x

2.如果x>y,需要先把x分区中的某些个分区合并成一个新的分区,然后最终合并成y个分区,此时,需要把coalesce方法的shuffle设置成false.

总结:如果想要增加分区的时候,可以用repartition或者coalesce,true都行,但是一定要有shuffle操作,分区数量才会增加,为了让该函数并行执行,通常把shuffle的值设置成true。

你可能感兴趣的:(大数据)