论文Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

Grad-CAM: Why did you say that?
Visual Explanations from Deep Networks via Gradient-based Localization

1. 简介

Gradient-weighted Class Activation
Mapping (Grad-CAM),卷积神经网络可视化的工具
论文Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization_第1张图片
论文Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization_第2张图片
论文Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization_第3张图片

2.实现

class GradCam:
    def __init__(self, model, target_layer_names, use_cuda):
        self.model = model
        self.model.eval()
        self.cuda = use_cuda
        if self.cuda:
            self.model = model.cuda()

        self.extractor = ModelOutputs(self.model, target_layer_names)

    def forward(self, input):
        return self.model(input)

    def __call__(self, input, index=None):
        if self.cuda:
            features, output = self.extractor(input.cuda())
        else:
            features, output = self.extractor(input)

        if index == None:
            index = np.argmax(output.cpu().data.numpy())

        one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
        one_hot[0][index] = 1
        one_hot = torch.from_numpy(one_hot).requires_grad_(True)
        if self.cuda:
            one_hot = torch.sum(one_hot.cuda() * output)
        else:
            one_hot = torch.sum(one_hot * output)

        self.model.features.zero_grad()
        self.model.classifier.zero_grad()
        one_hot.backward(retain_graph=True)

        grads_val = self.extractor.get_gradients()[-1].cpu().data.numpy()

        target = features[-1]
        target = target.cpu().data.numpy()[0, :]

        weights = np.mean(grads_val, axis=(2, 3))[0, :]
        cam = np.zeros(target.shape[1:], dtype=np.float32)

        for i, w in enumerate(weights):
            cam += w * target[i, :, :]

        cam = np.maximum(cam, 0)
        cam = cv2.resize(cam, (224, 224))
        cam = cam - np.min(cam)
        cam = cam / np.max(cam)
        return cam

参考:

  1. Grad-CAM: Why did you say that;
  2. github代码

你可能感兴趣的:(深度学习)