本文没有繁文缛节,纯数学推导,建议先阅读《word2vec中的数学原理详解》
可以阅读《逻辑回归算法分析》理解逻辑回归。
sigmoid函数: σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+e−x1
σ ′ ( x ) = σ ( x ) [ 1 − σ ( x ) ] \sigma'(x) = \sigma(x)[1 - \sigma(x)] σ′(x)=σ(x)[1−σ(x)]
[ l o g σ ( x ) ] ′ = σ ′ ( x ) σ ( x ) = 1 − σ ( x ) [log\sigma(x)]' = \frac{\sigma'(x)}{\sigma(x)} = 1 - \sigma(x) [logσ(x)]′=σ(x)σ′(x)=1−σ(x)
[ l o g ( 1 − σ ( x ) ) ] ′ = − σ ′ ( x ) 1 − σ ( x ) = − σ ( x ) [log(1 - \sigma(x))]' = \frac{-\sigma'(x)}{1 - \sigma(x)} = - \sigma(x) [log(1−σ(x))]′=1−σ(x)−σ′(x)=−σ(x)
逻辑回归用于解决二分类问题,定义好极大对数似然函数,采用梯度上升的方法进行优化。事实上,word2vec的算法本质就是逻辑回归。
根据上下文词,预测当前词,将预测误差反向更新到每个上下文词上,以达到更准确的预测的目的。
记:
1、 p w p^w pw:从根节点出发,到达 w w w的路径;
2、 l w l^w lw:路径 p w p^w pw包含节点的个数;
3、 p 1 w , p 2 w , ⋯   , p l w w p_1^w, p_2^w, \cdots, p_{l^w}^w p1w,p2w,⋯,plww:路径 p w p^w pw中第 l w l^w lw个节点,其中 p 1 w p_1^w p1w是根节点, p l w w p_{l^w}^w plww是 w w w对应的节点
4、 d 2 w , d 3 w , ⋯   , d l w w ϵ { 0 , 1 } d_2^w, d_3^w, \cdots, d_{l^w}^w \ \epsilon \ \left \{ 0, 1 \right \} d2w,d3w,⋯,dlww ϵ {0,1}:词 w w w的哈夫曼编码,它由 l w − 1 l^w - 1 lw−1位编码构成, d j w d_j^w djw表示路径 p w p^w pw第 j j j个节点对应的编码(根节点不编码)。
5、 θ 1 w , θ 2 w , ⋯   , θ l w − 1 w ϵ R m \theta_1^w, \theta_2^w, \cdots, \theta_{l^w - 1}^w \ \epsilon \ \mathbb{R}^m θ1w,θ2w,⋯,θlw−1w ϵ Rm:路径 p w p^w pw中非叶子节点对应的向量, θ j w \theta_j^w θjw表示路径 p w p^w pw第 j j j个非叶子节点对应的向量
6、 L a b e l ( p j w ) = 1 − d j w , j = 2 , 3 , ⋯   , l w Label(p_j^w) = 1 - d_j^w, j = 2,3,\cdots,l^w Label(pjw)=1−djw,j=2,3,⋯,lw:表示路径 p w p^w pw第 j j j个节点对应的分类标签(根节点不分类)
极大似然: ∏ w ϵ C p ( w ∣ C o n t e x t ( w ) ) \prod_{w \epsilon C}p(w|Context(w)) ∏wϵCp(w∣Context(w))
极大对数似然: £ = ∑ w ϵ C l o g p ( w ∣ C o n t e x t ( w ) ) \pounds = \sum_{w \epsilon C} log \ p(w|Context(w)) £=∑wϵClog p(w∣Context(w))
条件概率: p ( w ∣ C o n t e x t ( w ) ) = ∏ j = 2 l w p ( d j w ∣ X w , θ j − 1 w ) p(w|Context(w)) = \prod_{j=2}^{l^w} p(d_j^w|X_w, \theta_{j-1}^w) p(w∣Context(w))=∏j=2lwp(djw∣Xw,θj−1w),其中:
p ( d j w ∣ X w , θ j − 1 w ) = { σ ( X w T θ j − 1 w ) , d j w = 0 1 − σ ( X w T θ j − 1 w ) , d j w = 1 p(d_j^w|X_w, \theta_{j-1}^w) = \left\{\begin{matrix}\sigma (X_w^T \theta_{j - 1}^w), \quad \quad \ \ d_j^w = 0 & \\ & \\ 1 - \sigma (X_w^T \theta_{j - 1}^w), \quad d_j^w = 1 & \end{matrix}\right. p(djw∣Xw,θj−1w)=⎩⎨⎧σ(XwTθj−1w), djw=01−σ(XwTθj−1w),djw=1,注意:在word2vec中的哈夫曼树中,编码0表示正类,编码1表示负类。
X w = ∑ u ϵ C o n t e x t ( w ) v ( u ) ∣ C o n t e x t ( w ) ∣ X_w = \frac{\sum_{u \epsilon Context(w)} v(u)}{|Context(w)|} Xw=∣Context(w)∣∑uϵContext(w)v(u)
写成整体即: p ( d j w ∣ X w , θ j − 1 w ) = [ σ ( X w T θ j − 1 w ) ] 1 − d j w ⋅ [ 1 − σ ( X w T θ j − 1 w ) ] d j w p(d_j^w|X_w, \theta_{j-1}^w) = [\sigma (X_w^T \theta_{j - 1}^w)]^{1 - d_j^w} \cdot [1 - \sigma (X_w^T \theta_{j - 1}^w)]^{d_j^w} p(djw∣Xw,θj−1w)=[σ(XwTθj−1w)]1−djw⋅[1−σ(XwTθj−1w)]djw,代入对数似然函数得:
£ = ∑ w ϵ C l o g ∏ j = 2 l w p ( d j w ∣ X w , θ j − 1 w ) \pounds = \sum _{w \epsilon C} log \prod_{j=2}^{l^w} p(d_j^w|X_w, \theta_{j-1}^w) £=∑wϵClog∏j=2lwp(djw∣Xw,θj−1w)
= ∑ w ϵ C l o g ∏ j = 2 l w { [ σ ( X w T θ j − 1 w ) ] 1 − d j w ⋅ [ 1 − σ ( X w T θ j − 1 w ) ] d j w } = \sum _{w \epsilon C} log \prod_{j=2}^{l^w} \left \{ [\sigma (X_w^T \theta_{j - 1}^w)]^{1 - d_j^w} \cdot [1 - \sigma (X_w^T \theta_{j - 1}^w)]^{d_j^w} \right \} =∑wϵClog∏j=2lw{[σ(XwTθj−1w)]1−djw⋅[1−σ(XwTθj−1w)]djw}
= ∑ w ϵ C ∑ j = 2 l w { ( 1 − d j w ) ⋅ l o g [ σ ( X w T θ j − 1 w ) ] + d j w ⋅ l o g [ 1 − σ ( X w T θ j − 1 w ) ] } = \sum_{w \epsilon C} \sum_{j=2}^{l^w} \left \{ (1 - d_j^w) \cdot log [\sigma (X_w^T \theta_{j - 1}^w)] + d_j^w \cdot log [1 - \sigma (X_w^T \theta_{j - 1}^w)] \right \} =∑wϵC∑j=2lw{(1−djw)⋅log[σ(XwTθj−1w)]+djw⋅log[1−σ(XwTθj−1w)]}
为求导方便,记: £ ( w , j ) = ( 1 − d j w ) ⋅ l o g [ σ ( X w T θ j − 1 w ) ] + d j w ⋅ l o g [ 1 − σ ( X w T θ j − 1 w ) ] \pounds(w, j) = (1 - d_j^w) \cdot log [\sigma (X_w^T \theta_{j - 1}^w)] + d_j^w \cdot log [1 - \sigma (X_w^T \theta_{j - 1}^w)] £(w,j)=(1−djw)⋅log[σ(XwTθj−1w)]+djw⋅log[1−σ(XwTθj−1w)]
£ ( w , j ) \pounds(w, j) £(w,j)关于 θ j − 1 w \theta_{j - 1}^w θj−1w的梯度:
∂ £ ( w , j ) ∂ θ j − 1 w = ∂ ∂ θ j − 1 w { ( 1 − d j w ) ⋅ l o g [ σ ( X w T θ j − 1 w ) ] + d j w ⋅ l o g [ 1 − σ ( X w T θ j − 1 w ) ] } \frac{\partial \pounds(w, j)}{\partial \theta_{j - 1}^w} = \frac{\partial }{\partial \theta_{j - 1}^w}\left \{ (1 - d_j^w) \cdot log [\sigma (X_w^T \theta_{j - 1}^w)] + d_j^w \cdot log [1 - \sigma (X_w^T \theta_{j - 1}^w)] \right \} ∂θj−1w∂£(w,j)=∂θj−1w∂{(1−djw)⋅log[σ(XwTθj−1w)]+djw⋅log[1−σ(XwTθj−1w)]}
= ( 1 − d j w ) [ 1 − σ ( X w T θ j − 1 w ) ] X w − d j w [ σ ( X w T θ j − 1 w ) ] X w = (1 - d_j^w)[1 - \sigma (X_w^T \theta_{j - 1}^w)]X_w - d_j^w [\sigma (X_w^T \theta_{j - 1}^w)]X_w =(1−djw)[1−σ(XwTθj−1w)]Xw−djw[σ(XwTθj−1w)]Xw
= { ( 1 − d j w ) [ 1 − σ ( X w T θ j − 1 w ) ] − d j w [ σ ( X w T θ j − 1 w ) ] } X w = \left \{ (1 - d_j^w)[1 - \sigma (X_w^T \theta_{j - 1}^w)] - d_j^w [\sigma (X_w^T \theta_{j - 1}^w)] \right \} X_w ={(1−djw)[1−σ(XwTθj−1w)]−djw[σ(XwTθj−1w)]}Xw
= [ 1 − d j w − σ ( X w T θ j − 1 w ) ] X w = [1 - d_j^w - \sigma (X_w^T \theta_{j - 1}^w)] X_w =[1−djw−σ(XwTθj−1w)]Xw
于是, θ j − 1 w \theta_{j - 1}^w θj−1w的更新可写为:
θ j − 1 w : = θ j − 1 w + η [ 1 − d j w − σ ( X w T θ j − 1 w ) ] X w \theta_{j - 1}^w \ := \ \theta_{j - 1}^w + \eta [1 - d_j^w - \sigma (X_w^T \theta_{j - 1}^w)] X_w θj−1w := θj−1w+η[1−djw−σ(XwTθj−1w)]Xw
由于在 £ ( w , j ) \pounds(w, j) £(w,j)中 θ j − 1 w \theta_{j - 1}^w θj−1w与 X w X_w Xw是对称的,所以 £ ( w , j ) \pounds(w, j) £(w,j)关于 X w X_w Xw的梯度:
∂ £ ( w , j ) ∂ X w = [ 1 − d j w − σ ( X w T θ j − 1 w ) ] θ j − 1 w \frac{\partial \pounds(w, j)}{\partial X_w} = [1 - d_j^w - \sigma (X_w^T \theta_{j - 1}^w)] \theta_{j - 1}^w ∂Xw∂£(w,j)=[1−djw−σ(XwTθj−1w)]θj−1w
用 ∂ £ ( w , j ) ∂ X w \frac{\partial \pounds(w, j)}{\partial X_w} ∂Xw∂£(w,j)来对上下文词 v ( u ) , u ϵ C o n t e x t ( w ) v(u), u \epsilon Context(w) v(u),uϵContext(w)进行更新:
v ( u ) : = v ( u ) + η ∑ j = 2 l w ∂ £ ( w , j ) ∂ X w v(u) := v(u) + \eta \sum_{j=2}^{l^w}\frac{\partial \pounds(w, j)}{\partial X_w} v(u):=v(u)+η∑j=2lw∂Xw∂£(w,j)
以样本 ( C o n t e x t ( w ) , w ) (Context(w), w) (Context(w),w)为例,训练伪代码如下:
e = 0 e = 0 e=0
X w = ∑ u ϵ C o n t e x t ( w ) v ( u ) ∣ C o n t e x t ( w ) ∣ X_w = \frac{\sum_{u \epsilon Context(w)} v(u)}{|Context(w)|} Xw=∣Context(w)∣∑uϵContext(w)v(u)
F O R j = 2 : l w D O FOR \quad j = 2:l^w \quad DO FORj=2:lwDO
{
q = σ ( X w T θ j − 1 w ) q = \sigma(X_w^T\theta_{j - 1}^w) q=σ(XwTθj−1w)
g = η [ 1 − d j w − q ] g = \eta [1 - d_j^w - q] g=η[1−djw−q]
e : = e + g θ j − 1 w e := e + g\theta_{j - 1}^w e:=e+gθj−1w
θ j − 1 w : = θ j − 1 w + g X w \theta_{j - 1}^w := \theta_{j - 1}^w + gX_w θj−1w:=θj−1w+gXw
}
F O R u ϵ C o n t e x t ( w ) D O FOR \quad u \epsilon Context(w) \quad DO FORuϵContext(w)DO
{
v ( u ) : = v ( u ) + e v(u) := v(u) + e v(u):=v(u)+e
}
这里有必要对以上伪代码的含义做一个说明,当然,直接通过导数推导过程来理解也可以,但导数的推导过程并没有表达其真实的内在含义,下文中有类似的地方,不再说明。
1、 σ ( X w T θ j − 1 w ) \sigma(X_w^T\theta_{j - 1}^w) σ(XwTθj−1w):
其含义是在已知上下文的前提下,在当前词的哈夫曼路径上做分类预测,根据路径上的父节点 θ j − 1 w \theta_{j - 1}^w θj−1w,预测其子节点 θ j w \theta_{j}^w θjw,得到的子节点的分类标签。当然,这里得到的分类标签是[0,1]之间的实数,而不是{0, 1}二分类,这个值与0,1之间的差距即是预测误差。把 σ ( X w T θ j − 1 w ) \sigma(X_w^T\theta_{j - 1}^w) σ(XwTθj−1w)理解成子节点 θ j w \theta_{j}^w θjw正分类的概率也是可以的。
2、 1 − d j w − q 1 - d_j^w - q 1−djw−q:
1 − d j w 1 - d_j^w 1−djw的含义是子节点 θ j w \theta_{j}^w θjw的真实分类标签, 1 − d j w − q 1 - d_j^w - q 1−djw−q则是真实标签与预测标签之间的误差。
3、 e : = e + g θ j − 1 w e := e + g\theta_{j - 1}^w e:=e+gθj−1w:
这里是一个关键点,回到我们最开始的优化函数上,要求是的最大对数似然: £ = ∑ w ϵ C l o g p ( w ∣ C o n t e x t ( w ) ) \pounds = \sum_{w \epsilon C} log \ p(w|Context(w)) £=∑wϵClog p(w∣Context(w)),即求极大值,所以要用梯度上升的方法进行优化(机器学习中一般是梯度下降),所以e的更新是加法(梯度下降是减法)。
当梯度为正的时, g θ j − 1 w > 0 g\theta_{j - 1}^w > 0 gθj−1w>0,则 e : = e + g θ j − 1 w e := e + g\theta_{j - 1}^w e:=e+gθj−1w相加后变大,将 e e e更新到 v ( u ) v(u) v(u)后让 X w X_w Xw变大, X w X_w Xw变大后 σ ( X w T θ j − 1 w ) \sigma(X_w^T\theta_{j - 1}^w) σ(XwTθj−1w)也就变大,也就是说预测的分类标签越像1(正类),也可以理解成预测为正类的概率增大。为什么要让 σ ( X w T θ j − 1 w ) \sigma(X_w^T\theta_{j - 1}^w) σ(XwTθj−1w)增大呢?反过来思考,当梯度为正的时, ( 1 − d j w − q ) > 0 (1 - d_j^w - q) > 0 (1−djw−q)>0,这时只有当 d j w = 0 d_j^w = 0 djw=0时其值才可能为正,而 d j w = 0 d_j^w = 0 djw=0表示正类,分类标签为1,所以优化时要让 σ ( X w T θ j − 1 w ) \sigma(X_w^T\theta_{j - 1}^w) σ(XwTθj−1w)趋近于1。
同样,当梯度为负的时, g θ j − 1 w < 0 g\theta_{j - 1}^w < 0 gθj−1w<0,则 e : = e + g θ j − 1 w e := e + g\theta_{j - 1}^w e:=e+gθj−1w相加后变小,将 e e e更新到 v ( u ) v(u) v(u)后让 X w X_w Xw变小, X w X_w Xw变小后 σ ( X w T θ j − 1 w ) \sigma(X_w^T\theta_{j - 1}^w) σ(XwTθj−1w)也就变小,也就是说预测的分类标签越像0(负类),也可以理解成预测为正类的概率减小。同样,反过来思考,当梯度为负的时, ( 1 − d j w − q ) < 0 (1 - d_j^w - q) < 0 (1−djw−q)<0,这时只有当 d j w = 1 d_j^w = 1 djw=1时其值才可能为负,而 d j w = 1 d_j^w = 1 djw=1表示负类,分类标签为0,所以优化时要让 σ ( X w T θ j − 1 w ) \sigma(X_w^T\theta_{j - 1}^w) σ(XwTθj−1w)趋近于0。
4、 θ j − 1 w : = θ j − 1 w + g X w \theta_{j - 1}^w := \theta_{j - 1}^w + gX_w θj−1w:=θj−1w+gXw:
同上
5、 F O R j = 2 : l w D O FOR \quad j = 2:l^w \quad DO FORj=2:lwDO:
该循环的含义是上下文预测的是叶子节点的词(当前词在叶子节点上),要经过该词的哈夫曼路径才能到达,所以要循环累计路径上(除根节点)每一次分类的误差。
总结:根据上下文词,遍历当前词的哈夫曼路径,累计(除根节点以外)每个节点的二分类误差,将误差反向更新到每个上下文词上(同时也会更新路径上节点的辅助向量)。
对 w w w的负样本子集 N E G ( w ) NEG(w) NEG(w)的每个样本,定义样本标签:
L w ( w ~ ) = { 1 , w = w ~ 0 , w ≠ w ~ L^w(\tilde{w}) = \left\{\begin{matrix}1,\quad w = \tilde{w} & \\ & \\ 0,\quad w \neq \tilde{w} & \end{matrix}\right. Lw(w~)=⎩⎨⎧1,w=w~0,w̸=w~
极大似然: ∏ w ϵ C p ( w ∣ C o n t e x t ( w ) ) \prod_{w \epsilon C}p(w|Context(w)) ∏wϵCp(w∣Context(w))
极大对数似然: £ = ∑ w ϵ C l o g p ( w ∣ C o n t e x t ( w ) ) \pounds = \sum_{w \epsilon C} log \ p(w|Context(w)) £=∑wϵClog p(w∣Context(w))
条件概率: p ( w ∣ C o n t e x t ( w ) ) = ∏ u ϵ { w } ∪ N E G ( w ) p ( u ∣ C o n t e x t ( w ) ) p(w|Context(w)) = \prod_{u \epsilon \left \{ w \right \} \cup NEG(w)}p(u|Context(w)) p(w∣Context(w))=∏uϵ{w}∪NEG(w)p(u∣Context(w)),其中:
p ( u ∣ C o n t e x t ( w ) ) = { σ ( X w T θ u ) , L w ( u ) = 1 1 − σ ( X w T θ u ) , L w ( u ) = 0 p(u|Context(w)) = \left\{\begin{matrix}\sigma (X_w^T \theta^u), \quad \quad \ \ L^w(u) = 1 & \\ & \\ 1 - \sigma (X_w^T \theta^u), \quad L^w(u) = 0 & \end{matrix}\right. p(u∣Context(w))=⎩⎨⎧σ(XwTθu), Lw(u)=11−σ(XwTθu),Lw(u)=0
X w = ∑ u ϵ C o n t e x t ( w ) v ( u ) ∣ C o n t e x t ( w ) ∣ X_w = \frac{\sum_{u \epsilon Context(w)} v(u)}{|Context(w)|} Xw=∣Context(w)∣∑uϵContext(w)v(u)
写成整体即: p ( u ∣ C o n t e x t ( w ) ) = [ σ ( X w T θ u ) ] L w ( u ) ⋅ [ 1 − σ ( X w T θ u ) ] 1 − L w ( u ) p(u|Context(w)) = [\sigma (X_w^T \theta^u)]^{L^w(u)} \cdot [1 - \sigma (X_w^T \theta^u)]^{1 - L^w(u)} p(u∣Context(w))=[σ(XwTθu)]Lw(u)⋅[1−σ(XwTθu)]1−Lw(u),代入对数似然函数得:
£ = ∑ w ϵ C l o g ∏ u ϵ { w } ∪ N E G ( w ) p ( u ∣ C o n t e x t ( w ) ) \pounds = \sum_{w \epsilon C} log \ \prod_{u \epsilon \left \{ w \right \} \cup NEG(w)}p(u|Context(w)) £=∑wϵClog ∏uϵ{w}∪NEG(w)p(u∣Context(w))
= ∑ w ϵ C l o g ∏ u ϵ { w } ∪ N E G ( w ) [ σ ( X w T θ u ) ] L w ( u ) ⋅ [ 1 − σ ( X w T θ u ) ] 1 − L w ( u ) = \sum_{w \epsilon C} log \ \prod_{u \epsilon \left \{ w \right \} \cup NEG(w)} [\sigma (X_w^T \theta^u)]^{L^w(u)} \cdot [1 - \sigma (X_w^T \theta^u)]^{1 - L^w(u)} =∑wϵClog ∏uϵ{w}∪NEG(w)[σ(XwTθu)]Lw(u)⋅[1−σ(XwTθu)]1−Lw(u)
= ∑ w ϵ C ∑ u ϵ { w } ∪ N E G ( w ) { L w ( u ) ⋅ l o g [ σ ( X w T θ u ) ] + [ 1 − L w ( u ) ] ⋅ l o g [ 1 − σ ( X w T θ u ) ] } = \sum_{w \epsilon C} \sum_{u \epsilon \left \{ w \right \} \cup NEG(w)} \left \{ L^w(u) \cdot log [\sigma (X_w^T \theta^u)] + [1 - L^w(u)] \cdot log [1 - \sigma (X_w^T \theta^u)] \right \} =∑wϵC∑uϵ{w}∪NEG(w){Lw(u)⋅log[σ(XwTθu)]+[1−Lw(u)]⋅log[1−σ(XwTθu)]}
为求导方便,记: £ ( w , u ) = L w ( u ) ⋅ l o g [ σ ( X w T θ u ) ] + [ 1 − L w ( u ) ] ⋅ l o g [ 1 − σ ( X w T θ u ) ] \pounds(w, u) = L^w(u) \cdot log [\sigma (X_w^T \theta^u)] + [1 - L^w(u)] \cdot log [1 - \sigma (X_w^T \theta^u)] £(w,u)=Lw(u)⋅log[σ(XwTθu)]+[1−Lw(u)]⋅log[1−σ(XwTθu)]
£ ( w , u ) \pounds(w, u) £(w,u)关于 θ u \theta^u θu的梯度:
∂ £ ( w , u ) ∂ θ u = ∂ ∂ θ u { L w ( u ) ⋅ l o g [ σ ( X w T θ u ) ] + [ 1 − L w ( u ) ] ⋅ l o g [ 1 − σ ( X w T θ u ) ] } \frac{\partial \pounds(w, u)}{\partial \theta^u} = \frac{\partial }{\partial \theta^u}\left \{ L^w(u) \cdot log [\sigma (X_w^T \theta^u)] + [1 - L^w(u)] \cdot log [1 - \sigma (X_w^T \theta^u)] \right \} ∂θu∂£(w,u)=∂θu∂{Lw(u)⋅log[σ(XwTθu)]+[1−Lw(u)]⋅log[1−σ(XwTθu)]}
= L w ( u ) ⋅ [ 1 − σ ( X w T θ u ) ] X w − [ 1 − L w ( u ) ] ⋅ [ σ ( X w T θ u ) ] X w = L^w(u) \cdot [1 - \sigma (X_w^T \theta^u)]X_w - [1 - L^w(u)] \cdot [\sigma (X_w^T \theta^u)] X_w =Lw(u)⋅[1−σ(XwTθu)]Xw−[1−Lw(u)]⋅[σ(XwTθu)]Xw
= { L w ( u ) ⋅ [ 1 − σ ( X w T θ u ) ] − [ 1 − L w ( u ) ] ⋅ [ σ ( X w T θ u ) ] } X w = \left \{ L^w(u) \cdot [1 - \sigma (X_w^T \theta^u)] - [1 - L^w(u)] \cdot [\sigma (X_w^T \theta^u)] \right \} X_w ={Lw(u)⋅[1−σ(XwTθu)]−[1−Lw(u)]⋅[σ(XwTθu)]}Xw
= [ L w ( u ) − σ ( X w T θ u ) ] X w = [L^w(u) - \sigma (X_w^T \theta^u) ] X_w =[Lw(u)−σ(XwTθu)]Xw
于是, θ u \theta^u θu的更新可写为:
θ u : = θ u + η [ L w ( u ) − σ ( X w T θ u ) ] X w \theta^u \ := \ \theta^u + \eta [L^w(u) - \sigma (X_w^T \theta^u) ] X_w θu := θu+η[Lw(u)−σ(XwTθu)]Xw
由于在 £ ( w , u ) \pounds(w, u) £(w,u)中 θ u \theta^u θu与 X w X_w Xw是对称的,所以 £ ( w , u ) \pounds(w, u) £(w,u)关于 X w X_w Xw的梯度:
∂ £ ( w , u ) ∂ X w = [ L w ( u ) − σ ( X w T θ u ) ] θ u \frac{\partial \pounds(w, u)}{\partial X_w} = [L^w(u) - \sigma (X_w^T \theta^u) ] \theta^u ∂Xw∂£(w,u)=[Lw(u)−σ(XwTθu)]θu
用 ∂ £ ( w , u ) ∂ X w \frac{\partial \pounds(w, u)}{\partial X_w} ∂Xw∂£(w,u)来对上下文词 v ( u ) , u ϵ C o n t e x t ( w ) v(u), u \epsilon Context(w) v(u),uϵContext(w)进行更新:
v ( u ) : = v ( u ) + η ∑ u ϵ { w } ∪ N E G ( w ) ∂ £ ( w , u ) ∂ X w v(u) := v(u) + \eta \sum_{u \epsilon \left \{ w \right \} \cup NEG(w)}\frac{\partial \pounds(w, u)}{\partial X_w} v(u):=v(u)+η∑uϵ{w}∪NEG(w)∂Xw∂£(w,u)
以样本 ( C o n t e x t ( w ) , w ) (Context(w), w) (Context(w),w)为例,训练伪代码如下:
e = 0 e = 0 e=0
X w = ∑ u ϵ C o n t e x t ( w ) v ( u ) ∣ C o n t e x t ( w ) ∣ X_w = \frac{\sum_{u \epsilon Context(w)} v(u)}{|Context(w)|} Xw=∣Context(w)∣∑uϵContext(w)v(u)
F O R u ϵ { w } ∪ N E G ( w ) D O FOR \quad u \epsilon \left \{ w \right \} \cup NEG(w) \quad DO FORuϵ{w}∪NEG(w)DO
{
q = σ ( X w T θ u ) q = \sigma(X_w^T\theta^u) q=σ(XwTθu)
g = η [ L w ( u ) − q ] g = \eta [L^w(u) - q] g=η[Lw(u)−q]
e : = e + g θ u e := e + g\theta^u e:=e+gθu
θ u : = θ u + g X w \theta^u := \theta^u + gX_w θu:=θu+gXw
}
F O R u ϵ C o n t e x t ( w ) D O FOR \quad u \epsilon Context(w) \quad DO FORuϵContext(w)DO
{
v ( u ) : = v ( u ) + e v(u) := v(u) + e v(u):=v(u)+e
}
总结:根据上下文词,对当前词做一次负采样(包括当前词,当前词是正样本),遍历每个样本,累计上下文对每个样本的预测误差,将误差反向更新到每个上下文词上(同时也会更新样本向量)。
根据当前词,预测上下文词,将预测误差反向更新到当前词上,以达到更准确的预测的目的。但word2vec并没有按这个思路训练,而是依然按照CBOW的思路,用上下文中的每个词(注意这里的区别,CBOW是合并了上下文,即 ∑ u ϵ C o n t e x t ( w ) v ( u ) \sum_{u \epsilon Context(w)}v(u) ∑uϵContext(w)v(u)),对当前词进行预测,再将预测误差反向更新到该上下文词上。
极大似然: ∏ w ϵ C p ( C o n t e x t ( w ) ∣ w ) \prod_{w \epsilon C}p(Context(w)|w) ∏wϵCp(Context(w)∣w)
极大对数似然: £ = ∑ w ϵ C l o g p ( C o n t e x t ( w ) ∣ w ) \pounds = \sum_{w \epsilon C} log \ p(Context(w)|w) £=∑wϵClog p(Context(w)∣w)
条件概率: p ( C o n t e x t ( w ) ∣ w ) = ∏ u ϵ C o n t e x t ( w ) p ( u ∣ w ) p(Context(w)|w) = \prod_{u \epsilon Context(w)} p(u|w) p(Context(w)∣w)=∏uϵContext(w)p(u∣w),其中:
p ( u ∣ w ) = ∏ j = 2 l u p ( d j u ∣ v ( w ) , θ j − 1 u ) p(u|w) = \prod_{j=2}^{l^u} p(d_j^u|v(w), \theta_{j-1}^u) p(u∣w)=∏j=2lup(dju∣v(w),θj−1u)
p ( d j u ∣ v ( w ) , θ j − 1 u ) = { σ ( v ( w ) T θ j − 1 u ) , d j u = 0 1 − σ ( v ( w ) T θ j − 1 u ) , d j u = 1 p(d_j^u|v(w), \theta_{j-1}^u) = \left\{\begin{matrix}\sigma (v(w)^T \theta_{j - 1}^u), \quad \quad \ \ \ d_j^u = 0 & \\ & \\ 1 - \sigma (v(w)^T \theta_{j - 1}^u), \quad d_j^u = 1 & \end{matrix}\right. p(dju∣v(w),θj−1u)=⎩⎨⎧σ(v(w)Tθj−1u), dju=01−σ(v(w)Tθj−1u),dju=1
写成整体即: p ( d j u ∣ v ( w ) , θ j − 1 u ) = [ σ ( v ( w ) T θ j − 1 u ) ] 1 − d j u ⋅ [ 1 − σ ( v ( w ) T θ j − 1 u ) ] d j u p(d_j^u|v(w), \theta_{j-1}^u) = [\sigma (v(w)^T \theta_{j - 1}^u)]^{1 - d_j^u} \cdot [1 - \sigma (v(w)^T \theta_{j - 1}^u)]^{d_j^u} p(dju∣v(w),θj−1u)=[σ(v(w)Tθj−1u)]1−dju⋅[1−σ(v(w)Tθj−1u)]dju,代入对数似然函数得:
£ = ∑ w ϵ C l o g ∏ u ϵ C o n t e x t ( w ) ∏ j = 2 l u p ( d j u ∣ v ( w ) , θ j − 1 u ) \pounds = \sum _{w \epsilon C} log \prod_{u \epsilon Context(w)} \prod_{j=2}^{l^u} p(d_j^u|v(w), \theta_{j-1}^u) £=∑wϵClog∏uϵContext(w)∏j=2lup(dju∣v(w),θj−1u)
= ∑ w ϵ C l o g ∏ u ϵ C o n t e x t ( w ) ∏ j = 2 l u [ σ ( v ( w ) T θ j − 1 u ) ] 1 − d j u ⋅ [ 1 − σ ( v ( w ) T θ j − 1 u ) ] d j u = \sum _{w \epsilon C} log \prod_{u \epsilon Context(w)} \prod_{j=2}^{l^u} [\sigma (v(w)^T \theta_{j - 1}^u)]^{1 - d_j^u} \cdot [1 - \sigma (v(w)^T \theta_{j - 1}^u)]^{d_j^u} =∑wϵClog∏uϵContext(w)∏j=2lu[σ(v(w)Tθj−1u)]1−dju⋅[1−σ(v(w)Tθj−1u)]dju
= ∑ w ϵ C ∑ u ϵ C o n t e x t ( w ) ∑ j = 2 l u { ( 1 − d j u ) ⋅ l o g [ σ ( v ( w ) T θ j − 1 u ) ] + d j u ⋅ l o g [ 1 − σ ( v ( w ) T θ j − 1 u ) ] } = \sum _{w \epsilon C} \sum_{u \epsilon Context(w)} \sum_{j=2}^{l^u} \left \{ (1 - d_j^u) \cdot log \ [\sigma (v(w)^T \theta_{j - 1}^u)] + d_j^u \cdot log [1 - \sigma (v(w)^T \theta_{j - 1}^u)] \right \} =∑wϵC∑uϵContext(w)∑j=2lu{(1−dju)⋅log [σ(v(w)Tθj−1u)]+dju⋅log[1−σ(v(w)Tθj−1u)]}
为求导方便,记: £ ( w , u , j ) = ( 1 − d j u ) ⋅ l o g [ σ ( v ( w ) T θ j − 1 u ) ] + d j u ⋅ l o g [ 1 − σ ( v ( w ) T θ j − 1 u ) ] \pounds(w, u, j) = (1 - d_j^u) \cdot log \ [\sigma (v(w)^T \theta_{j - 1}^u)] + d_j^u \cdot log [1 - \sigma (v(w)^T \theta_{j - 1}^u)] £(w,u,j)=(1−dju)⋅log [σ(v(w)Tθj−1u)]+dju⋅log[1−σ(v(w)Tθj−1u)]
£ ( w , u , j ) \pounds(w, u, j) £(w,u,j)关于 θ j − 1 u \theta_{j - 1}^u θj−1u的梯度:
∂ £ ( w , u , j ) ∂ θ j − 1 u = ∂ ∂ θ j − 1 u { ( 1 − d j u ) ⋅ l o g [ σ ( v ( w ) T θ j − 1 u ) ] + d j u ⋅ l o g [ 1 − σ ( v ( w ) T θ j − 1 u ) ] } \frac{\partial \pounds(w, u, j)}{\partial \theta_{j - 1}^u} = \frac{\partial }{\partial \theta_{j - 1}^u}\left \{ (1 - d_j^u) \cdot log \ [\sigma (v(w)^T \theta_{j - 1}^u)] + d_j^u \cdot log [1 - \sigma (v(w)^T \theta_{j - 1}^u)] \right \} ∂θj−1u∂£(w,u,j)=∂θj−1u∂{(1−dju)⋅log [σ(v(w)Tθj−1u)]+dju⋅log[1−σ(v(w)Tθj−1u)]}
= ( 1 − d j u ) [ 1 − σ ( v ( w ) T θ j − 1 u ) ] v ( w ) − d j u [ σ ( v ( w ) T θ j − 1 u ) ] v ( w ) = (1 - d_j^u)[1 - \sigma (v(w)^T \theta_{j - 1}^u)]v(w) - d_j^u [\sigma (v(w)^T \theta_{j - 1}^u)]v(w) =(1−dju)[1−σ(v(w)Tθj−1u)]v(w)−dju[σ(v(w)Tθj−1u)]v(w)
= { ( 1 − d j u ) [ 1 − σ ( v ( w ) T θ j − 1 u ) ] − d j u [ σ ( v ( w ) T θ j − 1 u ) ] } v ( w ) = \left \{ (1 - d_j^u)[1 - \sigma (v(w)^T \theta_{j - 1}^u)] - d_j^u [\sigma (v(w)^T \theta_{j - 1}^u)] \right \}v(w) ={(1−dju)[1−σ(v(w)Tθj−1u)]−dju[σ(v(w)Tθj−1u)]}v(w)
= [ 1 − d j u − σ ( v ( w ) T θ j − 1 u ) ] v ( w ) = [1 - d_j^u - \sigma (v(w)^T \theta_{j - 1}^u)] v(w) =[1−dju−σ(v(w)Tθj−1u)]v(w)
于是, θ j − 1 u \theta_{j - 1}^u θj−1u的更新可写为:
θ j − 1 u : = θ j − 1 u + η [ 1 − d j u − σ ( v ( w ) T θ j − 1 u ) ] v ( w ) \theta_{j - 1}^u \ := \ \theta_{j - 1}^u + \eta [1 - d_j^u - \sigma (v(w)^T \theta_{j - 1}^u)] v(w) θj−1u := θj−1u+η[1−dju−σ(v(w)Tθj−1u)]v(w)
由于在 £ ( w , u , j ) \pounds(w, u, j) £(w,u,j)中 θ j − 1 u \theta_{j - 1}^u θj−1u与 v ( w ) v(w) v(w)是对称的,所以 £ ( w , u , j ) \pounds(w, u, j) £(w,u,j)关于 v ( w ) v(w) v(w)的梯度:
∂ £ ( w , u , j ) ∂ v ( w ) = [ 1 − d j u − σ ( v ( w ) T θ j − 1 u ) ] θ j − 1 u \frac{\partial \pounds(w, u, j)}{\partial v(w)} = [1 - d_j^u - \sigma (v(w)^T \theta_{j - 1}^u)] \theta_{j - 1}^u ∂v(w)∂£(w,u,j)=[1−dju−σ(v(w)Tθj−1u)]θj−1u
用 ∂ £ ( w , u , j ) ∂ v ( w ) \frac{\partial \pounds(w, u, j)}{\partial v(w)} ∂v(w)∂£(w,u,j)来对当前词 v ( w ) v(w) v(w)进行更新:
v ( w ) : = v ( w ) + η ∑ u ϵ C o n t e x t ( w ) ∑ j = 2 l u ∂ £ ( w , u , j ) ∂ v ( w ) v(w) := v(w) + \eta \sum_{u \epsilon Context(w)} \sum_{j=2}^{l^u}\frac{\partial \pounds(w, u, j)}{\partial v(w)} v(w):=v(w)+η∑uϵContext(w)∑j=2lu∂v(w)∂£(w,u,j)
以样本 ( w , C o n t e x t ( w ) ) (w, Context(w)) (w,Context(w))为例,训练伪代码如下:
e = 0 e = 0 e=0
F O R u ϵ C o n t e x t ( w ) D O FOR \quad u \epsilon Context(w) \quad DO FORuϵContext(w)DO
{
F O R j = 2 : l u D O FOR \quad j = 2:l^u \quad DO FORj=2:luDO
{
q = σ ( v ( w ) T θ j − 1 u ) q = \sigma(v(w)^T\theta_{j - 1}^u) q=σ(v(w)Tθj−1u)
g = η [ 1 − d j u − q ] g = \eta [1 - d_j^u - q] g=η[1−dju−q]
e : = e + g θ j − 1 u e := e + g\theta_{j - 1}^u e:=e+gθj−1u
θ j − 1 u : = θ j − 1 u + g v ( w ) \theta_{j - 1}^u := \theta_{j - 1}^u + gv(w) θj−1u:=θj−1u+gv(w)
}
}
v ( w ) : = v ( w ) + e v(w) := v(w) + e v(w):=v(w)+e
值得注意的是,word2vec并不是按上面的流程进行训练的,而依然按CBOW的思路,对每一个上下文词,预测当前词,分析如下:
极大似然: ∏ w ϵ C ∏ u ϵ C o n t e x t ( w ) p ( w ∣ u ) \prod_{w \epsilon C}\prod_{u \epsilon Context(w)}p(w|u) ∏wϵC∏uϵContext(w)p(w∣u)
极大对数似然: £ = ∑ w ϵ C ∑ u ϵ C o n t e x t ( w ) l o g p ( w ∣ u ) \pounds = \sum_{w \epsilon C}\sum_{u \epsilon Context(w)}log \ p(w|u) £=∑wϵC∑uϵContext(w)log p(w∣u)
条件概率: p ( w ∣ u ) = ∏ j = 2 l w p ( d j w ∣ v ( u ) , θ j − 1 w ) p(w|u) = \prod_{j=2}^{l^w} p(d_j^w|v(u), \theta_{j-1}^w) p(w∣u)=∏j=2lwp(djw∣v(u),θj−1w),其中:
p ( d j w ∣ v ( u ) , θ j − 1 w ) = { σ ( v ( u ) T θ j − 1 w ) , d j w = 0 1 − σ ( v ( u ) T θ j − 1 w ) , d j w = 1 p(d_j^w|v(u), \theta_{j-1}^w) = \left\{\begin{matrix}\sigma (v(u)^T \theta_{j - 1}^w), \quad \quad \ \ d_j^w = 0 & \\ & \\ 1 - \sigma (v(u)^T \theta_{j - 1}^w), \quad d_j^w = 1 & \end{matrix}\right. p(djw∣v(u),θj−1w)=⎩⎨⎧σ(v(u)Tθj−1w), djw=01−σ(v(u)Tθj−1w),djw=1
写成整体即: p ( d j w ∣ v ( u ) , θ j − 1 w ) = [ σ ( v ( u ) T θ j − 1 w ) ] 1 − d j w ⋅ [ 1 − σ ( v ( u ) T θ j − 1 w ) ] d j w p(d_j^w|v(u), \theta_{j-1}^w) = [\sigma (v(u)^T \theta_{j - 1}^w)]^{1 - d_j^w} \cdot [1 - \sigma (v(u)^T \theta_{j - 1}^w)]^{d_j^w} p(djw∣v(u),θj−1w)=[σ(v(u)Tθj−1w)]1−djw⋅[1−σ(v(u)Tθj−1w)]djw,代入对数似然函数得:
£ = ∑ w ϵ C ∑ u ϵ C o n t e x t ( w ) l o g ∏ j = 2 l w p ( d j w ∣ v ( u ) , θ j − 1 w ) \pounds = \sum_{w \epsilon C}\sum_{u \epsilon Context(w)} log \prod_{j=2}^{l^w} p(d_j^w|v(u), \theta_{j-1}^w) £=∑wϵC∑uϵContext(w)log∏j=2lwp(djw∣v(u),θj−1w)
= ∑ w ϵ C ∑ u ϵ C o n t e x t ( w ) l o g ∏ j = 2 l w [ σ ( v ( u ) T θ j − 1 w ) ] 1 − d j w ⋅ [ 1 − σ ( v ( u ) T θ j − 1 w ) ] d j w = \sum_{w \epsilon C}\sum_{u \epsilon Context(w)} log \prod_{j=2}^{l^w} [\sigma (v(u)^T \theta_{j - 1}^w)]^{1 - d_j^w} \cdot [1 - \sigma (v(u)^T \theta_{j - 1}^w)]^{d_j^w} =∑wϵC∑uϵContext(w)log∏j=2lw[σ(v(u)Tθj−1w)]1−djw⋅[1−σ(v(u)Tθj−1w)]djw
= ∑ w ϵ C ∑ u ϵ C o n t e x t ( w ) ∑ j = 2 l w { ( 1 − d j w ) ⋅ l o g [ σ ( v ( u ) T θ j − 1 w ) ] + d j w ⋅ l o g [ 1 − σ ( v ( u ) T θ j − 1 w ) ] } = \sum_{w \epsilon C}\sum_{u \epsilon Context(w)}\sum_{j=2}^{l^w} \left \{ (1 - d_j^w) \cdot log [\sigma (v(u)^T \theta_{j - 1}^w)] + d_j^w \cdot log [1 - \sigma (v(u)^T \theta_{j - 1}^w)] \right \} =∑wϵC∑uϵContext(w)∑j=2lw{(1−djw)⋅log[σ(v(u)Tθj−1w)]+djw⋅log[1−σ(v(u)Tθj−1w)]}
为求导方便,记: £ ( w , u , j ) = ( 1 − d j w ) ⋅ l o g [ σ ( v ( u ) T θ j − 1 w ) ] + d j w ⋅ l o g [ 1 − σ ( v ( u ) T θ j − 1 w ) ] \pounds(w, u, j) = (1 - d_j^w) \cdot log [\sigma (v(u)^T \theta_{j - 1}^w)] + d_j^w \cdot log [1 - \sigma (v(u)^T \theta_{j - 1}^w)] £(w,u,j)=(1−djw)⋅log[σ(v(u)Tθj−1w)]+djw⋅log[1−σ(v(u)Tθj−1w)]
£ ( w , u , j ) \pounds(w, u, j) £(w,u,j)关于 θ j − 1 w \theta_{j - 1}^w θj−1w的梯度:
∂ £ ( w , u , j ) ∂ θ j − 1 w = ∂ ∂ θ j − 1 w { ( 1 − d j w ) ⋅ l o g [ σ ( v ( u ) T θ j − 1 w ) ] + d j w ⋅ l o g [ 1 − σ ( v ( u ) T θ j − 1 w ) ] } \frac{\partial \pounds(w, u, j)}{\partial \theta_{j - 1}^w} = \frac{\partial }{\partial \theta_{j - 1}^w}\left \{ (1 - d_j^w) \cdot log [\sigma (v(u)^T \theta_{j - 1}^w)] + d_j^w \cdot log [1 - \sigma (v(u)^T \theta_{j - 1}^w)] \right \} ∂θj−1w∂£(w,u,j)=∂θj−1w∂{(1−djw)⋅log[σ(v(u)Tθj−1w)]+djw⋅log[1−σ(v(u)Tθj−1w)]}
= ( 1 − d j w ) [ 1 − σ ( v ( u ) T θ j − 1 w ) ] v ( u ) − d j w [ σ ( v ( u ) T θ j − 1 w ) ] v ( u ) = (1 - d_j^w)[1 - \sigma (v(u)^T \theta_{j - 1}^w)]v(u) - d_j^w [\sigma (v(u)^T \theta_{j - 1}^w)]v(u) =(1−djw)[1−σ(v(u)Tθj−1w)]v(u)−djw[σ(v(u)Tθj−1w)]v(u)
= { ( 1 − d j w ) [ 1 − σ ( v ( u ) T θ j − 1 w ) ] − d j w [ σ ( v ( u ) T θ j − 1 w ) ] } v ( u ) = \left \{ (1 - d_j^w)[1 - \sigma (v(u)^T \theta_{j - 1}^w)] - d_j^w [\sigma (v(u)^T \theta_{j - 1}^w)] \right \} v(u) ={(1−djw)[1−σ(v(u)Tθj−1w)]−djw[σ(v(u)Tθj−1w)]}v(u)
= [ 1 − d j w − σ ( v ( u ) T θ j − 1 w ) ] v ( u ) = [1 - d_j^w - \sigma (v(u)^T \theta_{j - 1}^w)] v(u) =[1−djw−σ(v(u)Tθj−1w)]v(u)
于是, θ j − 1 w \theta_{j - 1}^w θj−1w的更新可写为:
θ j − 1 w : = θ j − 1 w + η [ 1 − d j w − σ ( v ( u ) T θ j − 1 w ) ] v ( u ) \theta_{j - 1}^w \ := \ \theta_{j - 1}^w + \eta [1 - d_j^w - \sigma (v(u)^T \theta_{j - 1}^w)] v(u) θj−1w := θj−1w+η[1−djw−σ(v(u)Tθj−1w)]v(u)
由于在 £ ( w , u , j ) \pounds(w, u, j) £(w,u,j)中 θ j − 1 w \theta_{j - 1}^w θj−1w与 v ( u ) v(u) v(u)是对称的,所以 £ ( w , u , j ) \pounds(w, u, j) £(w,u,j)关于 v ( u ) v(u) v(u)的梯度:
∂ £ ( w , u , j ) ∂ v ( u ) = [ 1 − d j w − σ ( v ( u ) T θ j − 1 w ) ] θ j − 1 w \frac{\partial \pounds(w, u, j)}{\partial v(u)} = [1 - d_j^w - \sigma (v(u)^T \theta_{j - 1}^w)] \theta_{j - 1}^w ∂v(u)∂£(w,u,j)=[1−djw−σ(v(u)Tθj−1w)]θj−1w
用 ∂ £ ( w , u , j ) ∂ v ( u ) \frac{\partial \pounds(w, u, j)}{\partial v(u)} ∂v(u)∂£(w,u,j)来对上下文词 v ( u ) , u ϵ C o n t e x t ( w ) v(u), u \epsilon Context(w) v(u),uϵContext(w)进行更新:
v ( u ) : = v ( u ) + η ∑ j = 2 l w ∂ £ ( w , u , j ) ∂ v ( u ) v(u) := v(u) + \eta \sum_{j=2}^{l^w}\frac{\partial \pounds(w, u, j)}{\partial v(u)} v(u):=v(u)+η∑j=2lw∂v(u)∂£(w,u,j)
以样本 ( w , C o n t e x t ( w ) ) (w, Context(w)) (w,Context(w))为例,训练伪代码如下:
F O R u ϵ C o n t e x t ( w ) D O FOR \quad u \epsilon Context(w) \quad DO FORuϵContext(w)DO
{
e = 0 e = 0 e=0
F O R j = 2 : l w D O FOR \quad j = 2:l^w \quad DO FORj=2:lwDO
{
q = σ ( v ( u ) T θ j − 1 w ) q = \sigma(v(u)^T\theta_{j - 1}^w) q=σ(v(u)Tθj−1w)
g = η [ 1 − d j w − q ] g = \eta [1 - d_j^w - q] g=η[1−djw−q]
e : = e + g θ j − 1 w e := e + g\theta_{j - 1}^w e:=e+gθj−1w
θ j − 1 w : = θ j − 1 w + g v ( u ) \theta_{j - 1}^w := \theta_{j - 1}^w + gv(u) θj−1w:=θj−1w+gv(u)
}
v ( u ) : = v ( u ) + e v(u) := v(u) + e v(u):=v(u)+e
}
总结:根据上下文词(用该上下文词来预测当前词),遍历当前词的哈夫曼路径,累计(除根节点以外)每个节点的二分类误差,将误差反向更新到该上下文词上(同时也会更新路径上节点的辅助向量)。
对 w w w的负样本子集 N E G ( w ) NEG(w) NEG(w)的每个样本,定义样本标签:
L w ( w ~ ) = { 1 , w = w ~ 0 , w ≠ w ~ L^w(\tilde{w}) = \left\{\begin{matrix}1,\quad w = \tilde{w} & \\ & \\ 0,\quad w \neq \tilde{w} & \end{matrix}\right. Lw(w~)=⎩⎨⎧1,w=w~0,w̸=w~
极大似然: ∏ w ϵ C p ( C o n t e x t ( w ) ∣ w ) \prod_{w \epsilon C}p(Context(w)|w) ∏wϵCp(Context(w)∣w)
极大对数似然: £ = ∑ w ϵ C l o g p ( C o n t e x t ( w ) ∣ w ) \pounds = \sum_{w \epsilon C} log \ p(Context(w)|w) £=∑wϵClog p(Context(w)∣w)
条件概率: p ( C o n t e x t ( w ) ∣ w ) = ∏ u ϵ C o n t e x t ( w ) p ( u ∣ w ) p(Context(w)|w) = \prod_{u \epsilon Context(w)} p(u|w) p(Context(w)∣w)=∏uϵContext(w)p(u∣w),其中:
p ( u ∣ w ) = ∏ z ϵ { u } ∪ N E G ( u ) p ( z ∣ w ) p(u|w) = \prod_{z \epsilon \left \{ u \right \} \cup NEG(u)} p(z|w) p(u∣w)=∏zϵ{u}∪NEG(u)p(z∣w)
p ( z ∣ w ) = { σ ( v ( w ) T θ z ) , L u ( z ) = 1 1 − σ ( v ( w ) T θ z ) , L u ( z ) = 0 p(z|w) = \left\{\begin{matrix}\sigma (v(w)^T \theta^z), \quad \quad \ \ L^u(z) = 1 & \\ & \\ 1 - \sigma (v(w)^T \theta^z), \quad L^u(z) = 0 & \end{matrix}\right. p(z∣w)=⎩⎨⎧σ(v(w)Tθz), Lu(z)=11−σ(v(w)Tθz),Lu(z)=0
写成整体即: p ( z ∣ w ) = [ σ ( v ( w ) T θ z ) ] L u ( z ) ⋅ [ 1 − σ ( v ( w ) T θ z ) ] 1 − L u ( z ) p(z|w) = [\sigma (v(w)^T \theta^z)]^{L^u(z)} \cdot [1 - \sigma (v(w)^T \theta^z)]^{1 - L^u(z)} p(z∣w)=[σ(v(w)Tθz)]Lu(z)⋅[1−σ(v(w)Tθz)]1−Lu(z),代入对数似然函数得:
£ = ∑ w ϵ C l o g ∏ u ϵ C o n t e x t ( w ) ∏ z ϵ { u } ∪ N E G ( u ) p ( z ∣ w ) \pounds = \sum _{w \epsilon C} log \prod_{u \epsilon Context(w)} \prod_{z \epsilon \left \{ u \right \} \cup NEG(u)} p(z|w) £=∑wϵClog∏uϵContext(w)∏zϵ{u}∪NEG(u)p(z∣w)
= ∑ w ϵ C l o g ∏ u ϵ C o n t e x t ( w ) ∏ z ϵ { u } ∪ N E G ( u ) [ σ ( v ( w ) T θ z ) ] L u ( z ) ⋅ [ 1 − σ ( v ( w ) T θ z ) ] 1 − L u ( z ) = \sum _{w \epsilon C} log \prod_{u \epsilon Context(w)} \prod_{z \epsilon \left \{ u \right \} \cup NEG(u)}[\sigma (v(w)^T \theta^z)]^{L^u(z)} \cdot [1 - \sigma (v(w)^T \theta^z)]^{1 - L^u(z)} =∑wϵClog∏uϵContext(w)∏zϵ{u}∪NEG(u)[σ(v(w)Tθz)]Lu(z)⋅[1−σ(v(w)Tθz)]1−Lu(z)
= ∑ w ϵ C ∑ u ϵ C o n t e x t ( w ) ∑ z ϵ { u } ∪ N E G ( u ) { L u ( z ) ⋅ l o g [ σ ( v ( w ) T θ z ) ] + [ 1 − L u ( z ) ] ⋅ l o g [ 1 − σ ( v ( w ) T θ z ) ] } = \sum _{w \epsilon C} \sum_{u \epsilon Context(w)} \sum_{z \epsilon \left \{ u \right \} \cup NEG(u)} \left \{ L^u(z) \cdot log [\sigma (v(w)^T \theta^z)] + [1 - L^u(z)] \cdot log [1 - \sigma (v(w)^T \theta^z)] \right \} =∑wϵC∑uϵContext(w)∑zϵ{u}∪NEG(u){Lu(z)⋅log[σ(v(w)Tθz)]+[1−Lu(z)]⋅log[1−σ(v(w)Tθz)]}
为求导方便,记: £ ( w , u , z ) = L u ( z ) ⋅ l o g [ σ ( v ( w ) T θ z ) ] + [ 1 − L u ( z ) ] ⋅ l o g [ 1 − σ ( v ( w ) T θ z ) ] \pounds(w, u, z) = L^u(z) \cdot log [\sigma (v(w)^T \theta^z)] + [1 - L^u(z)] \cdot log [1 - \sigma (v(w)^T \theta^z)] £(w,u,z)=Lu(z)⋅log[σ(v(w)Tθz)]+[1−Lu(z)]⋅log[1−σ(v(w)Tθz)]
£ ( w , u , z ) \pounds(w, u, z) £(w,u,z)关于 θ z \theta^z θz的梯度:
∂ £ ( w , u , z ) ∂ θ z = ∂ ∂ θ z { L u ( z ) ⋅ l o g [ σ ( v ( w ) T θ z ) ] + [ 1 − L u ( z ) ] ⋅ l o g [ 1 − σ ( v ( w ) T θ z ) ] } \frac{\partial \pounds(w, u, z)}{\partial \theta^z} = \frac{\partial }{\partial \theta^z}\left \{ L^u(z) \cdot log [\sigma (v(w)^T \theta^z)] + [1 - L^u(z)] \cdot log [1 - \sigma (v(w)^T \theta^z)] \right \} ∂θz∂£(w,u,z)=∂θz∂{Lu(z)⋅log[σ(v(w)Tθz)]+[1−Lu(z)]⋅log[1−σ(v(w)Tθz)]}
= L u ( z ) ⋅ [ 1 − σ ( v ( w ) T θ z ) ] v ( w ) − [ 1 − L u ( z ) ] ⋅ [ σ ( v ( w ) T θ z ) ] v ( w ) = L^u(z) \cdot [1 - \sigma (v(w)^T \theta^z)]v(w) - [1 - L^u(z)] \cdot [\sigma (v(w)^T \theta^z)]v(w) =Lu(z)⋅[1−σ(v(w)Tθz)]v(w)−[1−Lu(z)]⋅[σ(v(w)Tθz)]v(w)
= { L u ( z ) ⋅ [ 1 − σ ( v ( w ) T θ z ) ] − [ 1 − L u ( z ) ] ⋅ [ σ ( v ( w ) T θ z ) ] } v ( w ) = \left \{ L^u(z) \cdot [1 - \sigma (v(w)^T \theta^z)] - [1 - L^u(z)] \cdot [\sigma (v(w)^T \theta^z)] \right \}v(w) ={Lu(z)⋅[1−σ(v(w)Tθz)]−[1−Lu(z)]⋅[σ(v(w)Tθz)]}v(w)
= [ L u ( z ) − σ ( v ( w ) T θ z ) ] v ( w ) = [L^u(z) - \sigma (v(w)^T \theta^z)]v(w) =[Lu(z)−σ(v(w)Tθz)]v(w)
于是, θ z \theta^z θz的更新可写为:
θ z : = θ z + η [ L u ( z ) − σ ( v ( w ) T θ z ) ] v ( w ) \theta^z \ := \ \theta^z + \eta [L^u(z) - \sigma (v(w)^T \theta^z) ] v(w) θz := θz+η[Lu(z)−σ(v(w)Tθz)]v(w)
由于在 £ ( w , u , z ) \pounds(w, u, z) £(w,u,z)中 θ z \theta^z θz与 v ( w ) v(w) v(w)是对称的,所以 £ ( w , u , z ) \pounds(w, u, z) £(w,u,z)关于 v ( w ) v(w) v(w)的梯度:
∂ £ ( w , u , z ) ∂ v ( w ) = [ L u ( z ) − σ ( v ( w ) T θ z ) ] θ z \frac{\partial \pounds(w, u, z)}{\partial v(w)} = [L^u(z) - \sigma (v(w)^T \theta^z) ] \theta^z ∂v(w)∂£(w,u,z)=[Lu(z)−σ(v(w)Tθz)]θz
用 ∂ £ ( w , u , z ) ∂ v ( w ) \frac{\partial \pounds(w, u, z)}{\partial v(w)} ∂v(w)∂£(w,u,z)来对当前词 v ( w ) v(w) v(w)进行更新:
v ( w ) : = v ( w ) + η ∑ u ϵ C o n t e x t ( w ) ∑ z ϵ { u } ∪ N E G ( u ) ∂ £ ( w , u , z ) ∂ v ( w ) v(w) := v(w) + \eta \sum_{u \epsilon Context(w)} \sum_{z \epsilon \left \{ u \right \} \cup NEG(u)}\frac{\partial \pounds(w, u, z)}{\partial v(w)} v(w):=v(w)+η∑uϵContext(w)∑zϵ{u}∪NEG(u)∂v(w)∂£(w,u,z)
以样本 ( w , C o n t e x t ( w ) ) (w, Context(w)) (w,Context(w))为例,训练伪代码如下:
e = 0 e = 0 e=0
F O R u ϵ C o n t e x t ( w ) D O FOR \quad u \epsilon Context(w) \quad DO FORuϵContext(w)DO
{
F O R z ϵ { u } ∪ N E G ( u ) D O FOR \quad z \epsilon \left \{ u \right \} \cup NEG(u) \quad DO FORzϵ{u}∪NEG(u)DO
{
q = σ ( v ( w ) T θ z ) q = \sigma(v(w)^T\theta^z) q=σ(v(w)Tθz)
g = η [ L u ( z ) − q ] g = \eta [L^u(z) - q] g=η[Lu(z)−q]
e : = e + g θ z e := e + g\theta^z e:=e+gθz
θ z : = θ z + g v ( w ) \theta^z := \theta^z + gv(w) θz:=θz+gv(w)
}
}
v ( w ) : = v ( w ) + e v(w) := v(w) + e v(w):=v(w)+e
同样,word2vec也不是按上面的流程进行训练的,也依然按CBOW的思路,对每一个上下文词,预测当前词,分析如下:
极大似然: ∏ w ϵ C ∏ u ϵ C o n t e x t ( w ) p ( w ∣ u ) \prod_{w \epsilon C}\prod_{u \epsilon Context(w)}p(w|u) ∏wϵC∏uϵContext(w)p(w∣u)
极大对数似然: £ = ∑ w ϵ C ∑ u ϵ C o n t e x t ( w ) l o g p ( w ∣ u ) \pounds = \sum_{w \epsilon C}\sum_{u \epsilon Context(w)}log \ p(w|u) £=∑wϵC∑uϵContext(w)log p(w∣u)
条件概率: p ( w ∣ u ) = ∏ z ϵ { w } ∪ N E G ( w ) p ( z ∣ u ) p(w|u) = \prod_{z \epsilon \left \{ w \right \} \cup NEG(w)} p(z|u) p(w∣u)=∏zϵ{w}∪NEG(w)p(z∣u),其中:
p ( z ∣ u ) = { σ ( v ( u ) T θ z ) , L w ( z ) = 1 1 − σ ( v ( u ) T θ z ) , L w ( z ) = 0 p(z|u) = \left\{\begin{matrix}\sigma (v(u)^T \theta^z), \quad \quad \ \ L^w(z) = 1 & \\ & \\ 1 - \sigma (v(u)^T \theta^z), \quad L^w(z) = 0 & \end{matrix}\right. p(z∣u)=⎩⎨⎧σ(v(u)Tθz), Lw(z)=11−σ(v(u)Tθz),Lw(z)=0
写成整体即: p ( z ∣ u ) = [ σ ( v ( u ) T θ z ) ] L w ( z ) ⋅ [ 1 − σ ( v ( u ) T θ z ) ] 1 − L w ( z ) p(z|u) = [\sigma (v(u)^T \theta^z)]^{L^w(z)} \cdot [1 - \sigma (v(u)^T \theta^z)]^{1 - L^w(z)} p(z∣u)=[σ(v(u)Tθz)]Lw(z)⋅[1−σ(v(u)Tθz)]1−Lw(z),代入对数似然函数得:
£ = ∑ w ϵ C ∑ u ϵ C o n t e x t ( w ) l o g ∏ z ϵ { w } ∪ N E G ( w ) p ( z ∣ u ) \pounds =\sum_{w \epsilon C}\sum_{u \epsilon Context(w)}log \prod_{z \epsilon \left \{ w \right \} \cup NEG(w)} p(z|u) £=∑wϵC∑uϵContext(w)log∏zϵ{w}∪NEG(w)p(z∣u)
= ∑ w ϵ C ∑ u ϵ C o n t e x t ( w ) l o g ∏ z ϵ { w } ∪ N E G ( w ) [ σ ( v ( u ) T θ z ) ] L w ( z ) ⋅ [ 1 − σ ( v ( u ) T θ z ) ] 1 − L w ( z ) = \sum_{w \epsilon C}\sum_{u \epsilon Context(w)}log \prod_{z \epsilon \left \{ w \right \} \cup NEG(w)} [\sigma (v(u)^T \theta^z)]^{L^w(z)} \cdot [1 - \sigma (v(u)^T \theta^z)]^{1 - L^w(z)} =∑wϵC∑uϵContext(w)log∏zϵ{w}∪NEG(w)[σ(v(u)Tθz)]Lw(z)⋅[1−σ(v(u)Tθz)]1−Lw(z)
= ∑ w ϵ C ∑ u ϵ C o n t e x t ( w ) ∑ z ϵ { w } ∪ N E G ( w ) { L w ( z ) ⋅ l o g [ σ ( v ( u ) T θ z ) ] + [ 1 − L w ( z ) ] ⋅ l o g [ 1 − σ ( v ( u ) T θ z ) ] } = \sum_{w \epsilon C}\sum_{u \epsilon Context(w)} \sum_{z \epsilon \left \{ w \right \} \cup NEG(w)} \left \{ L^w(z) \cdot log [\sigma (v(u)^T \theta^z)] + [1 - L^w(z)] \cdot log [1 - \sigma (v(u)^T \theta^z)] \right \} =∑wϵC∑uϵContext(w)∑zϵ{w}∪NEG(w){Lw(z)⋅log[σ(v(u)Tθz)]+[1−Lw(z)]