- anythingLLM 使用教程
惟贤箬溪
穷玩AiAIGC人工智能
一、anythingLLM简介anythingLLM是一款灵活且功能强大的语言模型,它基于先进的深度学习架构构建,旨在为用户提供多样化的自然语言处理服务。其设计理念注重通用性和可扩展性,能够适应多种领域和任务,无论是文本生成、智能问答,还是翻译、摘要提取等,都能展现出出色的性能。与同类模型相比,anythingLLM具有训练数据丰富、模型优化程度高的优势,能够生成更符合逻辑、更具实用性的文本内容。
- 基于LangChain-Chatchat实现智能问答系统
2301_79125431
java
题解|#统计输入正数个数#5.6importjava.util.*;publicclassMain{publics广汽丰田发动机薪酬福利待遇1、工作时间:基本上为5天8小时工作制;2、薪资结构:基本工资+加班工资+各类补贴津贴+各类慰问金+小红书24届春招和25届实习,内部推荐小红书24届春招和25届实习,推荐码为:0T019BWYNARK,内推码仅适用于校招内推及微信小程序题解|#试卷发布当天作
- 国产Cursor来了?字节跳动出品AI编程工具——Trae使用全解析
码云逸栈
AI编程
Trae是什么?Trae是字节跳动最近发布的一款AIIDE,对标Cursor、Windsurf、Copilot这类AI编程工具。它是国产工具,在语言和易用性上更符合国人习惯,且现阶段完全免费!Trae提供智能问答、代码自动补全以及基于Agent的AI自动编程能力,帮助开发者在项目开发中与AI灵活协作,大幅提升开发效率。想深入了解可查看官网文档:docs.trae.ai/docs/what-i安装下
- 知识图谱在人工智能语义理解与推理中的关键作用及发展研究
@王威&
人工智能
摘要本文聚焦知识图谱,深入剖析其在人工智能语义理解与推理中的核心作用。阐述知识图谱的构建原理、表示方法,分析其在自然语言处理、智能问答系统、推荐系统等多领域助力语义理解与推理的应用,探讨面临的挑战并展望未来发展方向,全面呈现知识图谱对人工智能发展的重要价值与深远影响。一、引言在人工智能追求更精准理解和处理人类语言与知识的进程中,知识图谱成为关键技术。它以结构化形式组织海量知识,揭示实体间复杂关系,
- 【Spring AI】基于专属知识库的RAG智能问答小程序开发——代码逐行精讲:核心交互函数及RAG知识库构建
un_fired
spring人工智能java
系列文章目录【SpringAI】基于专属知识库的RAG智能问答小程序开发——完整项目(含完整前端+后端代码)【SpringAI】基于专属知识库的RAG智能问答小程序开发——代码逐行精讲:核心ChatClient对象相关构造函数【SpringAI】基于专属知识库的RAG智能问答小程序开发——代码逐行精讲:核心交互函数及RAG知识库构建文章目录系列文章目录前言1.Service层知识库构建与检索函数详
- 用LangChain构建自愈式生成式AI:颠覆传统知识库的智能问答系统实战
煜bart
机器人人工智能pythonAI编程
引言:当生成式AI遇到自进化架构ChatGPT的惊艳表现让企业意识到生成式AI的潜力,但传统问答系统仍面临数据孤岛、知识更新滞后等痛点。本文将揭秘如何通过LangChain框架构建具有自进化能力的智能问答系统,实现企业知识库的实时动态更新与智能推理。通过本文,您将掌握一套让AI系统在运行中持续学习、自主优化的创新架构。---##一、核心技术突破###1.1自愈式数据管道(Self-healingP
- AI编程工具领域:深度理解项目架构篇
xinxiyinhe
AI编程python人工智能AI编程人工智能
AI编程工具领域:深度理解项目架构篇在AI编程工具领域,能够读取项目目录并深度理解项目架构的工具主要通过代码索引、上下文感知和智能问答等功能实现。以下是基于最新信息的工具评估与分析:1.通义灵码(阿里云)核心能力:@workspace功能:基于RAG技术,支持本地代码库的索引和深度感知,可分析项目完整结构,生成文件解释、代码逻辑查询和整体修改建议。多语言支持:覆盖200+编程语言,兼容VSCode
- 自建 DeepSeek 时代已来,联网搜索如何高效实现
云原生
作者:张添翼(澄潭)开源LLM的新纪元:DeepSeek带来的技术平权随着DeepSeek等高质量开源大模型的涌现,企业自建智能问答系统的成本已降低90%以上。基于7B/13B参数量的模型在常规GPU服务器上即可获得商业级响应效果,配合Higress开源AI网关的增强能力,开发者可快速构建具备实时联网搜索能力的智能问答系统。Higress:零代码增强LLM的瑞士军刀Higress作为云原生API网
- 大模型RAG实战|混合检索:BM25检索+向量检索的LlamaIndex实现
AIGC大模型 吱屋猪
djangopython后端AI-native人工智能llama百度
ThinkRAG大模型RAG实战系列文章,带你深入探索使用LlamaIndex框架,构建本地大模型知识库问答系统。本系列涵盖知识库管理、检索优化、模型本地部署等主题,通过代码与实例,讲解如何打造生产级系统,实现本地知识库的快速检索与智能问答。本文我将介绍一种效果更好的混合检索方法,在实际问答场景中,优于向量数据库自带的混合检索功能。1什么是混合检索目前,大模型RAG系统中普遍采用混合检索来提升检索
- ChatGPT、DeepSeek、Grok 三者对比:AI 语言模型的博弈与未来
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能技术的飞速发展,AI语言模型已经成为人机交互、内容创作、代码生成、智能问答等领域的重要工具。其中,ChatGPT(OpenAI)、DeepSeek(中国团队研发)和Grok(xAI,ElonMusk旗下公司)是当前三大具有代表性的AI语言模型。它们在技术架构、应用场景、用户体验、生态开放性等多个维度各具特色,并针对不同的用户需
- RAG技术的PDF智能问答系统
AI Echoes
深度学习
关键要点系统基于RAG(检索增强生成)技术,允许用户上传PDF并进行智能问答。使用Ollama的deepseek-r1模型和FAISS向量数据库,支持普通对话和基于PDF的问答模式。提供简洁的Web界面,支持文件拖拽上传和多轮对话。研究表明,系统适合处理PDF内容查询,但性能可能因PDF复杂性而异。系统概述这个PDF智能问答系统是一个基于RAG技术的工具,旨在帮助用户通过上传PDF文件进行智能交互
- AI 问答系统实战:用 Python + Flask + LLM 打造你的智能对话机器人!
Leaton Lee
人工智能pythonflask
开篇互动:你是否想拥属于自己的AI问答机器人?“你是否想过拥有一个可以随时为你解答问题、提供建议的AI助手?”随着大语言模型(LLM)的快速发展,打造一个智能问答系统已经成为可能!本文将手把手教你如何利用Python和Flask快速搭建一个属于自己的AI问答系统,并集成强大的语言模型(如OpenAI的GPT-3.5或HuggingFace的LLaMA)。无论是技术小白还是有一定经验的开发者,都能轻
- 【AI辅助工具】Trae和Cursor 对比分析
Hello kele
人工智能AI编程
Trae和Cursor都是旨在提升编程效率的AI辅助工具,但在功能、定位和用户体验上有所差异。Trae:Trae是字节跳动推出的AI集成开发环境(IDE),专为中文开发者设计,提供全中文界面,符合国人使用习惯。主要特点:智能问答与代码自动补全:支持通过自然语言描述需求,自动生成相应的代码,减少手动编写代码的时间。Builder模式:类似于Cursor的Composer功能,帮助用户从零开始构建完整
- 非结构化数据中台AI大模型对接解决方案
CaritoB
非结构化数据管理人工智能机器学习大数据
引言企业数字化升级持续推进,数据要素和相应数据法律法规逐步完善,企业数据合规监管力度加大。大模型等前沿AI技术快速发展,企业利用AI推动生产力发展时也面临着数据安全和合规的挑战。例如AI智能问答应用场景中,企业敏感信息可能被无权限用户获取。此背景下,企业数据安全管理、应用、流通至关重要。非结构化数据中台为企业提供了一个安全整合、管理、分析和应用非结构化数据的解决方案,它能够快速整合、处理和分析大量
- BERT 和 Milvus 构建智能问答系统的全面技术解析,涵盖从原理到实践的完整流程
结合BERT和Milvus构建智能问答系统的全面技术解析,涵盖从原理到实践的完整流程。下面Python代码示例和优化策略:一、技术栈协作原理BERT的语义编码能力BERT作为预训练语言模型,通过双向Transformer结构将文本转换为高维向量(如768维),捕捉上下文语义信息。例如,句子"Milvus是向量数据库"会被编码为类似[0.2,-1.3,0.5,...]的向量19。Milvus的向量检
- XLNet:超越BERT的新星
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
-XLNet:超越BERT的新星1.背景介绍1.1自然语言处理的重要性自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解和生成人类语言。随着大数据时代的到来,海量的自然语言数据不断涌现,对NLP技术的需求与日俱增。NLP技术已广泛应用于机器翻译、智能问答、信息检索、情感分析等诸多领域,为人类生产和生活带来了巨大便利。1.2预
- OpenAI API教程
Jachin Huang
大模型指南人工智能语言模型
OpenAIAPI是由OpenAI公司开发,为LLM开发人员提供的一个简单接口。通过此API能在应用程序中方便地调用OpenAI提供的大模型基础能力。OpenAI的API协议已成为LLM领域的标准。本文将首先介绍OpenAIAPI基础知识和模型,然后以ChatCompletionsAPI和EmbeddingAPI为例子介绍OpenAIAPI的用法。最后使用Embedding模型构建一个网站智能问答
- J-LangChain,用Java实现LangChain编排!轻松加载PDF、切分文档、向量化存储,再到智能问答
花千树-010
JLangChain-TGlangchainjavapdfAIGCnlpAI编程
Java如何玩转大模型编排、RAG、Agent???在自然语言处理(NLP)的浪潮中,LangChain作为一种强大的模型编排框架,已经在Python社区中广受欢迎。然而,对于Java开发者来说,能否有一个同样高效、灵活的工具来实现类似功能?答案是肯定的!今天,我们将聚焦J-LangChain——一个专为Java打造的LangChain实现,带你探索如何用Java语言轻松构建从PDF处理到智能问答
- 【AI+智造】基于阿里云Ubuntu24.04系统,使用Ollama部署开源DeepSeek模型并集成到企业微信
邹工转型手札
Duodoo开源Odoo18开源企业信息化制造人工智能数据分析
作者:Odoo技术开发/资深信息化负责人日期:2025年2月28日本方案结合了本地部署与云服务调用的技术路径,涵盖部署步骤、集成逻辑及关键问题点,适用于企业级AI应用场景。一、方案背景与架构设计1.技术选型背景DeepSeek模型:作为开源大模型,支持文本生成、智能问答等场景,适合企业知识库与自动化服务。Ollama工具:轻量化本地模型部署框架,支持一键拉取模型镜像并启动API服务。企业微信集成:
- 使用LangChain与GPT4All模型进行交互
bavDHAUO
langchain交互python
技术背景介绍近年来,开源模型和框架在AI技术领域迅猛发展。GPT4All是一个开源的对话机器人生态系统,旨在为用户提供干净的助手数据,包括代码、故事和对话。这篇文章将介绍如何使用LangChain与GPT4All模型进行交互,以实现智能问答功能。核心原理解析GPT4All是基于大型语言模型(LLMs)的开源项目,通过训练大量干净的数据,能够生成高质量的对话和回答。LangChain是一种用于简化与
- DeepSeek超强搭档!这8款免费神器让你的效率翻倍
a小胡哦
Deepseekvscodegithub
作为AI领域的效率神器,DeepSeek凭借其强大的智能问答、文件解读和代码生成能力,已成为学习办公的必备工具。但如何让它发挥「1+1>2」的效果?我整理了8款免费软件,搭配DeepSeek让你的效率原地起飞!建议收藏⭐一、办公效率组合拳:告别加班,秒变职场达人WPSOffice推荐理由:免费+全功能办公套件,搭配DeepSeek的文档解析功能,可快速提取合同/报告重点,自动生成摘要。神级用法:用
- 通义灵码 - 你的 AI 智能编码小助手
甘蓝聊Java
【更新中...】项目中的那些事人工智能AI通义灵码Java编码助手
文章目录核心功能快速安装版本选择安装插件登录通义灵码相关配置体验功能基础功能研发智能问答AI程序员体验有感参考官网:https://lingma.aliyun.com/⭐版本:2.0.3【截至2025/02/05】❓简介:通义灵码,一款基于通义大模型的智能编码辅助工具。支持多种编程语言,比如Java、Go、Python、JavaScript、TypeScript等支持多种IDE,比如IDEA、VS
- 当我的同事先用了通义灵码DeepSeek-R1模型……
云原生
当你发现同事的代码生成速度比你快,注释比你多,甚至还能智能问答时,别慌,他可能只是比你先用了通义灵码的DeepSeek-R1模型。近日,通义灵码上线DeepSeek-R1模型选择功能,为开发者们提供更懂中文,更擅复杂场景的AI编码助手,安装只需30秒,在IDEA插件市场搜索“通义”,认准排名第一的插件——最新2.1.0版本已支持多个模型,具备实时续写、自然语言生成、智能问答等多项能力。我们选择阿里
- 2025预测趋势:AI知识库工具挑选指南
知识库知识库管理知识库软件
随着人工智能技术的飞速发展,AI知识库工具已成为企业和个人管理知识资产的重要手段。本文将探讨2025年AI知识库工具的预测趋势,并推荐六款精选工具,帮助用户挑选最适合的AI知识库解决方案。1.AI知识库的智能化:趋势预计到2025年,AI知识库工具将更加智能化,通过深度学习和自然语言处理技术,实现更精准的语义搜索和智能问答功能。这些工具将能够理解用户的查询意图,提供更准确和相关的信息。2.实时自动
- 无缝融入,即刻智能[4]:MaxKB知识库问答系统[进一步深度开发调试,完成基于API对话,基于ollama大模型本地部署等]
汀、人工智能
AIAgentLLM工业级落地实践人工智能AIAgent多智能体协作知识问答智能问答RAGAI编排流
无缝融入,即刻智能[4]:MaxKB知识库问答系统[进一步深度开发调试,完成基于API对话,基于ollama大模型本地部署等]1.简介MaxKB(MaxKnowledgeBase)是一款基于LLM大语言模型的开源知识库问答系统,1.1产品优势开箱即用:支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化、RAG(检索增强生成),智能问答交互体验好;无缝嵌入:支持零编码快速嵌入到第三方业务系
- 大模型如何改变教育?典型应用场景的探究与展望!
AGI大模型学习
大模型应用人工智能AI产品经理llama大模型AI大模型教程
目前,大模型在教育领域的应用主要体现在个性化学习助手、智能问答系统、内容生成与创作辅助、智能写作评估、跨语言学习支持、数学解题辅助等几个方面。大模型技术在教育领域凭借卓越的数据处理能力和深度学习技术,极大推动了教育质量的提升与教育公平的实现。分级分类的教育数据助力大模型发展在构建与优化大模型的过程中,教育数据能够帮助我们更精准地理解教育现象,更有质量地辅助教学。教育数据涵盖广泛,包括但不限于学生的
- 本地化部署AI知识库:基于Ollama+DeepSeek+AnythingLLM保姆级教程
elecfan2011
人工智能
前言在数据安全和隐私保护需求日益增长的今天,本地化部署AI知识库成为企业/开发者的首选方案。本文将手把手教你如何通过Ollama(模型管理工具)、DeepSeek-R1(国产开源大模型)和AnythingLLM(知识库管理平台),搭建一套完全本地运行的智能问答系统。全程无需联网,数据100%私有化!目录环境准备与工具安装部署DeepSeek-R1模型配置AnythingLLM知识库平台构建本地知识
- Windows Docker Desktop部署MaxKB详细教程
Roc-xb
docker容器运维MaxKB
MaxKB(MaxKnowledgeBase)是一款基于大语言模型(LLM)和检索增强生成(RAG)技术的开源知识库问答系统,旨在帮助企业、教育机构及研究组织高效管理知识并提供智能问答服务。一、前期准备工作首先,你需要再你的Windows电脑上安装DockerDesktop。本章教程,不介绍如何安装Docker。二、搜索镜像dockersearchmaxkb
- 基于AWS云平台的法律AI应用系统开发方案
weixin_30777913
aws云计算人工智能python
该方案可实现法律文档处理速度提升300%+,关键信息提取准确率可达92%以上(基于实际测试数据),适合构建企业级法律智能中台。建议采用分阶段实施策略,优先实现文档解析和智能问答模块。一、技术栈规划层级技术组件说明存储层AWSS3AmazonOpenSearch(向量数据库)存储原始PDF文件支持向量检索的法律知识库AI服务层OpenAIGPT-4APIAmazonSageMaker(LLM微调)A
- 人狗大战 Java新实现,更有趣,Java _Springboot_Spring AI
m0_74824112
面试学习路线阿里巴巴javaspringspringboot
人狗大战场景介绍人狗大战最核心的还是用一个具体的例子来表达面向对象编程的能力,在最新的实现里面,我们扩展一下人和狗对战的流程,增加springboot,整合springaialibaba,实现一个人一边说话,一边跟狗对战的能力,主要想要体现springboot、springai的各种能力。本例使用springaialibaba+通义千问Qwenapi来构建这个智能问答系统,qwen有100万免费T
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag